1,355 research outputs found
A methodology to allow avalanche forecasting on an information retrieval system
This paper presents adaptations and tests undertaken to allow an information retrieval (IR) system to forecast the likelihood of avalanches on a particular day. The forecasting process uses historical data of the weather and avalanche conditions for a large number of days. A method for adapting these data into a form usable by a text-based IR system is first described, followed by tests showing the resulting system’s accuracy to be equal to existing ‘custom built’ forecasting systems. From this, it is concluded that the adaptation methodology is effective at allowing such data to be used in a text-based IR system. A number of advantages in using an IR system for avalanche forecasting are also presented
Statistical avalanche zoning.
Runout for the extreme event on an avalanche path is calculated from confidence limits on a regression analysis of path topographic parameters. This results in redefinition of the traditional zoning problem by dividing it into an estimation of runout distance by an engineering decision on the choice of confidence limit to the estimate and a dynamic problem with boundary conditions defined by the chosen limit
Cellular-Automata model for dense-snow avalanches
This paper introduces a three-dimensional model for simulating dense-snow avalanches, based on the numerical method of cellular automata. This method allows one to study the complex behavior of the avalanche by dividing it into small elements, whose interaction is described by simple laws, obtaining a reduction of the computational power needed to perform a three-dimensional simulation. Similar models by several authors have been used to model rock avalanches, mud and lava flows, and debris avalanches. A peculiar aspect of avalanche dynamics, i.e., the mechanisms of erosion of the snowpack and deposition of material from the avalanche is taken into account in the model. The capability of the proposed approach has been illustrated by modeling three documented avalanches that occurred in Susa Valley (Western Italian Alps). Despite the qualitative observations used for calibration, the proposed method is able to reproduce the correct three-dimensional avalanche path, using a digital terrain model, and the order of magnitude of the avalanche deposit volume
A comparison of single-cycle versus multiple-cycle proof testing strategies
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading
Efficacy and safety of a novel delayed-release risedronate 35 mg once-a-week tablet
Dosing regimens of oral bisphosphonates are inconvenient and contribute to poor compliance. The bone mineral density response to a once weekly delayed-release formulation of risedronate given before or following breakfast was non-inferior to traditional immediate-release risedronate given daily before breakfast. Delayed-release risedronate is a convenient regimen for oral bisphosphonate therapy
Targeted Expression of Catalase to Mitochondria Protects Against Ischemic Myopathy in High-Fat Diet-Fed Mice
Patients with type 2 diabetes respond poorly to treatments for peripheral arterial disease (PAD) and are more likely to present with the most severe manifestation of the disease, critical limb ischemia. The underlying mechanisms linking type 2 diabetes and the severity of PAD manifestation are not well understood. We sought to test whether diet-induced mitochondrial dysfunction and oxidative stress would increase the susceptibility of the peripheral limb to hindlimb ischemia (HLI). Six weeks of high-fat diet (HFD) in C57BL/6 mice was insufficient to alter skeletal muscle mitochondrial content and respiratory function or the size of ischemic lesion after HLI, despite reducing blood flow. However, 16 weeks of HFD similarly decreased ischemic limb blood flow, but also exacerbated limb tissue necrosis, increased the myopathic lesion size, reduced muscle regeneration, attenuated muscle function, and exacerbated ischemic mitochondrial dysfunction. Mechanistically, mitochondrial-targeted overexpression of catalase prevented the HFD-induced ischemic limb necrosis, myopathy, and mitochondrial dysfunction, despite no improvement in limb blood flow. These findings demonstrate that skeletal muscle mitochondria are a critical pathological link between type 2 diabetes and PAD. Furthermore, therapeutically targeting mitochondria and oxidant burden is an effective strategy to alleviate tissue loss and ischemic myopathy during PAD
The Multifunctional Protein BAG3: A Novel Therapeutic Target in Cardiovascular Disease
The B-cell lymphoma 2–associated anthanogene (BAG3) protein is expressed most prominently in the heart, the skeletal muscle, and in many forms of cancer. In the heart, it serves as a co-chaperone with heat shock proteins in facilitating autophagy; binds to B-cell lymphoma 2, resulting in inhibition of apoptosis; attaches actin to the Z disk, providing structural support for the sarcomere; and links the α-adrenergic receptor with the L-type Ca2+ channel. When BAG3 is overexpressed in cancer cells, it facilitates prosurvival pathways that lead to insensitivity to chemotherapy, metastasis, cell migration, and invasiveness. In contrast, in the heart, mutations in BAG3 have been associated with a variety of phenotypes, including both hypertrophic/restrictive and dilated cardiomyopathy. In murine skeletal muscle and vasculature, a mutation in BAG3 leads to critical limb ischemia after femoral artery ligation. An understanding of the biology of BAG3 is relevant because it may provide a therapeutic target in patients with both cardiac and skeletal muscle disease
Complex and unexpected dynamics in simple genetic regulatory networks
Peer reviewedPublisher PD
- …