STATISTICAL AVALANCHE ZONING!
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Abstract.——Runout for the extreme event on an avalanche
path is calculated from confidence limits on a regression
analysis of path topographic parameters. This results in
redefinition of the traditional zoning problem by dividing it
into an estimation of runout distance by an engineering
decision on the choice of confidence limit to the estimate,
and a dynamic problem with boundary conditions defined by the

chosen limit.

INTRODUCTION

The traditional method of avalanche zoning
involves the joint solution of the avalanche
runout and dynamics problems by selecting
appropriate friction coefficients for an
avalanche dynamics model. The physical problem
involves a complex transition of states with many
unknowns including: friction coefficients,
constitutive laws and properties of flowing snow.
These gaps in knowledge are significant; clearly
the problem is far from a solution.

The avalanche zoning problem may be
redefined by separation into two parts:
(1) estimation of the runout distance for the
extreme event on a path based on a regression
equation involving topographic parameters and a
selected confidence limit and (2) estimation of
speeds along the incline between the start
position and runout position. The latter
position is defined by choice of a confidence
limit based upon an engineering decision. In
this paper part 1 of the problem is introduced in
the simplest manner to illustrate the method;
further details will be provided in a forthcoming
paper.

ANALYSIS OF TOPOGRAPHIC PARAMETERS

The data set used in the present analysis
consists of estimates for 212 avalanche paths
from the maritime climate regime of Western
Norway. Extreme runout for time scales of at
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least 100 years was measured in the field and a
number of other parameters for the paths were
determined. The papers by Lied and Bakkehgi
(1980) and Bakkehoi, Domaas and Lied (1983) have
provided detailed descriptions of the data set,
including methods and accuracy.

The parameters used in the present analysis
consist of angles pictured in figure 1 and
defined by the following equations:
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A fourth parameter is the starting zone angle,
which is defined by tanf, the average slope in
the first 100 m of the avalanche starting zone.
For simplicity the origin of geometry is chosen
at the extreme tip of the runout (a point) and
the B point (AH, AX) is chosen as that for which
the slope angle first equals 10° proceeding
downslope from the avalanche start position.

The B point is chosen as a reference
position from which runout is marked so that tand
is the average slope in the runout zone. Using
the B point as a zero reference means that runout
can be regarding as taking positive, zero or
negative values if the avalanche stop position is
below, at or above the B point, respectively.

For a regression analysis approach, extreme
runout is based on a prediction of the minimum
value of a, given values of the potential
predictor variables (B, 6, and §). Use of § as a
predictor variable is limited to cases where the
runout zone is known to be at a constant angle,
such as a flat valley floor. For the present
data set, 131 paths have known § angles.



Correlation coefficients (R) were calculated
for a with respect to B, 6 (212 paths) and §
(131 paths). The results gave: 0.919, 0.388 and
-0.,111, respectively. This suggests that the
best one parameter model is a = f(B) and this was
confirmed by regression analysis.

An examination of residual plots for linear
regression of a with B showed that the predictive
equation provides biased estimates. This
suggests a transformation on the response
variable a. Power law regression gave a good
unbiased relationship for 212 avalanche paths:

4 = 0.730p1-06 (4)

with RZ2 = 0.861 and S = 0.0764 , the latter
quantity being the standard error. For
comparison the linear regression gave R2 =
and S = 2,52°

0.845

Another transformation explored was va. For
this case the regression equation is:

/& = 0.08798 + 2.57 (5)

with R2 = 0.853 and S = 0,218 . This equation
removes some of the bias in estimates over a
linear regression model but it is not as good in
that respect as equation (4). Equation (5) is
introduced because it appears more useful in
zoning applications, as will be discussed below.

A number of multiple regression equations
were derived in an attempt to improve the
predictive schemes by addition of 6 as a second
variable. However, it was not found possible to
improve the predictive scheme enough to warrant
inclusion of 6.

Addition of § as a predictor variable does
improve the predictive equations but this has
very limited application and therefore § is not
introduced here, in favor of simplicity.

Another possibility for estimating runout
when distances associated with the angles are
known for the avalanche paths, is the calculation
of horizontal reach (AX) from the B point. Using
equations (1) to (3) (fig. 1) it is easily shown
that:
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Calculations for 131 avalanche paths show
that == has a mean value of 0.171 and a standard

deviatgon of 0.113, Similarly, XX has a mean of

0.276 and standard deviation of 0?197.
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Figure l.—-Definitions of angles and length
scales for an avalanche path.

Regression analyses showed that ég-and A%
are statistically independent of B, 8 and § to a
good approximation (RZ =~ 0),

STATISTICAL AVALANCHE RUNOUT

Given the B point as a reference,
calculation of extreme runout depends on a
prediction of the minimum value of a expected for
a given model. The criterion used in this paper
corresponds to the best fitting upper envelope on
the distribution of B (ordinate) versus «a
(abcissa, fig. 2). Upper envelopes were
determined by calculating confidence limits for

= £(B) for linear regression, power law
regression [equation (4)] and the square root
transformation of equation (5).

The best fit to the upper limit on the B - a
distribution throughout the ranges of 8 and a was
found from confidence limits of equation (5). By
standard methods and using some approximations
for the large number of data points, an estimate
of the confidence limit for minimum value of a is
given by:

Yap = 0.08798 + [2.57 - (0.218)t __p_)] (8)
100

where t P is a value of the t distribution

for 210 degrees of freedom. Equation (8) states
that P% of avalanches have a values greater than
ap for 50 < P < 100. For example, for a 99%
upper confidence limit, t9.01 is 2.326 (taken
from standard tables) and an expression for
extreme runout for which 99% of avalanche paths
would have greater values of a is obtained by
substituting the value for t into

equation (8). Of course, choice of a value for P
depends upon an engineering decision, which is
determined by consideration of land prices and
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Figure 2,--Plot of B versus a for 212 avalanche
paths from Western Norway.

—— Regression line for square root
transformation on Equation (5).

—-—— Prediction for extreme runout (agg) for the
regression line shown.

Multiple plotted points at the same location
on the graph are denoted with extra bars
attached to the circle, e.g. Y represents 3
data points.

margin of safety desired, coupled to knowledge of
local climate records and avalanche return
periods. In many instances a 90% confidence
limit may be adequate for estimating the extreme
runout distance.

Another possibility for estimation of
extreme runout distance §onsists of extrapolation
to the upper limits of %—-or Ag-given mean values
and standard deviations. Since these quantities
are statistically independent of the predictor
values, the assumption that they are Gaussian

variables suggests the model:

Ay =0.276 + 0,197 [t, p ] (9
H (-2
B 100

and a similar expression for (§§Jp‘may be
B

derived.
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For the present data set, there are two
disadvantages to equation (9) as a predictive
equation: (1) calculations with actual examples
show that the accuracy is not as good throughout
the ranges of B and a as compared to
equation (8); (2) values of H, and X, were not
measured for the present data set and it is
unknown whether AX is proportional to H, or X, as
a model, as equation (9) would imply. %n spite
of these disadvantages, a rough estimate of

runout can be given once a value of t s

i
L
100)
determined by an engineering decision.

DISCUSSION

Prediction of extreme avalanche runout
distance has been presented for two types of
models expressed by equations (8) and (9).

Either of these may be used to prepare a
statistical map of confidence limits for
calculation of runout. Choice of a limit depends
upon an engineering decision, and this places the
zoning problem in the same language that other
problems concerned with risk and safety are
phrased in modern practice.

Two advantages of the approach presented
are: (1) it eliminates the necessity for solving
avalanche dynamics equations to determine runout
using an arbitrary choice of friction
coefficients, as is usually done; (2) the
dynamics problem is reduced to prediction of
speeds along the incline between the start
position and stop position, once a given
confidence limit is chosen (i.e. a set of
boundary conditions for the dynamics problem is
defined by choice of a confidence limit).

Many unanswered questions need to be
investigated with regard to the present approach
to runout. For example, field experience
strongly indicates that starting zone size should
have an influence. Also, the effect of climate
regime needs to be quantified.

The one parameter model is useful because
extreme avalanches reach slope angles near 10°.
A solution of the dynamics problem requires an
understanding of its dependence on the relevant
length scales and the effect of parameters such
as avalanche mass; this may emerge from a
solution of the runout problem. Until these
questions are answered and until a good physical
model for flowing snow is developed, solution of
the runout and dynamics problems together, as is
common in practice, amounts to nothing more than
a curve fitting exercise by adjustment of
friction coefficients.
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