824 research outputs found

    Current and Shot Noise Measurements in a Carbon Nanotube-Based Spin Diode

    Get PDF
    Low-temperature measurements of asymmetric carbon nanotube (CNT) quantum dots are reported. The CNTs are end-contacted with one ferromagnetic and one normal-metal electrode. The measurements show a spin-dependent rectification of the current caused by the asymmetry of the device. This rectification occurs for gate voltages for which the normal-metal lead is resonant with a level of the quantum dot. At the gate voltages at which the current is at the maximum current, a significant decrease in the current shot noise is observed

    Carbonized Jute Sorbent for Oil Cleanup

    Get PDF
    Over 90 million tons of textile waste is produced every year. A large share of waste comes from the goods made of cellulose fibers. Recently, special attention has been directed towards the use of textile cellulose waste for clean-up of oil spills. The major problem relies on their relatively small oil capacity and complex separation of individual cellulose fibers from the treated spills. In an attempt to overcome this drawback, a non-woven sorbent based on recycled jute fibers obtained from the carpet industry was manufactured. Improvement of porosity and hydrophobicity/oleophilicity of the sorbent was achieved by carbonization process in an inert atmosphere. FESEM analysis revealed the fiber reduction of almost 40% induced by fiber degradation while EDX analysis confirmed the increase in the carbon content by 75% after carbonization. Oil capacity in water medium, buoyancy, oil retention and reusability of non-carbonized and carbonized sorbents were evaluated by testing four different oils (crude oil, diesel oil, two motor oils). After carbonization process, the oil sorption capacity was doubled in comparison with noncarbonized sorbent independent of oil viscosity. Carbonized sorbent not only remained afloat after 24 h of staying in water, but it sorbed a negligible amount of water unlike non-carbonized sorbent. in addition to good buoyancy, oil retention on carbonized sorbents ranged from 64-80% after 30 min of draining. Larger uptake was achieved with oils of higher viscosity, but their retention was worse. Oil sorption capacity after 5 repeated sorption/desorption trials was significantly larger in the case of carbonized sorbent since it retained 80-88% of its initial oil sorption capacity depending on tested oil

    Zlato u proÅ”losti, sadaÅ”njosti i budućnosti

    Get PDF
    This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached todayā€™s value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics manufacturing and the synthesizing of different functional materials. It is important that we know that gold is also used in industry in many engineering applications (contacts in micro-electronics) and medicine (dental alloys, implants).Ovaj članak govori o zlatu kao kemijskom elementu. Posebna pažnja posvećena je njegovim fizikalno-kemijskim svojstvima i gdje i u kojem obliku se može pronaći u prirodi. Razmatra se uloga koju je zlato odigralo u povijesti i donosi se informacije o tome kako je doseglo razinu vrijednosti koju ima danas. Zlato razlomljeno na nanočestice upotrebljivo je u Å”irem spektru procesuiranja, uključujući opću nanotehnologiju, elektroničku prizvodnju i spajanju materijala raznih funkcionalnosti. Važno je znati da se zlato koristi i u industriji, mnogim inženjerskim procesima (kontakti u mikro-elektronici) i medicini (dentalne slitine, implatanti)

    Gold in the past, today and future

    Get PDF
    This paper deals with gold, which is described as a chemical element. Special attention is paid to its physical-chemical properties and, furthermore, where or in what form it can be found in nature. We discuss the role it has played through history and we inform how gold has been developed to the level it has reached today's value. Still more, when gold is broken into nanoparticles, this form could be highly useful for a wide range of processes, including general nanotechnology, electronics manufacturing and the synthesizing of different functional materials. It is important that we know that gold is also used in industry in many engineering applications (contacts in micro-electronics) and medicine (dental alloys, implants)

    Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light

    Get PDF
    In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5ā€“2.5 Āµm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections

    Dual responsive hybrid hydrogels for controlled release of local anesthetic

    Get PDF
    Inteligentni hidrogelovi, kao Å”to su pH osetljivi hidrogelovi na bazi poli(metakrilne kiseline) (PMAA), imaju veliku primenu u ciljanoj dostavi lekova. Međutim, slaba mehanička svojstva često ograničavaju primenu PMAA. Kako bi se prevaziÅ”lo navedeno ograničenje, nanoceluloza (NC) je prvo ekstrakovana iz drvnog otpadnog materijala, a zatim dodata u PMAA, zato Å”to je NC biokompatibilna, netoksična i ima odlična mehanička svojstva. Zatim je dodata karboskimetil celuloza (CMC) (celulozni derivat koji se često koristi za kontrolisano otpuÅ”tanje lekova). CMC može da stabilizuje nanočestice magnetita (MN) koje su takođe dodate. MN mogu značajno da poboljÅ”aju mehanička svojstva hidrogelova i takođe poseduju magnetna svojstva zbog čega imaju primenu za ciljano otpuÅ”tanje lekova. Ovako dobijeni materijal bi mogao da zaÅ”titi lek, dostavi ga do mesta delovanja, kontroliÅ”e brzinu njegovog otpuÅ”tanja i na taj način omogući efikasno dejstvo leka sa smanjenim neželjenim efektima. Lokalni anestetik ā€“ lidokain hidrohlorid (LH) se često u tretmanima injektira Å”to može imati ozbiljne neželjene efekte. Inkapsulacijom LH u hidrogelove na bazi PMAA, NC, CMC i MN (PMNC/MN-L) reÅ”en je navedeni problem. Karakterizacija PMNC/MN-L hidrogelova je izvedena primenom FTIR i SEM spektroskopija i kompresionim testovima, a zatim je analizirano bubrenje hidrogelova i otpuÅ”tanje LH. U ovom radu predstavljen je jedinstveni način ā€žzeleneā€ sinteze hibridnih hidrogelova osetljivih na spoljne stimulanse unapređenih svojstava i njihove primene za kontrolisano otpuÅ”tanje lokalnog anestetika sa smanjenim neželjnim efektima

    Electric Field Effect in Ultrathin Films near the Superconductor-Insulator Transition

    Full text link
    The effect of an electric field on the conductance of ultrathin films of metals deposited on substrates coated with a thin layer of amorphous Ge was investigated. A contribution to the conductance modulation symmetric with respect to the polarity of the applied electric field was found in regimes in which there was no sign of glassy behavior. For films with thicknesses that put them on the insulating side of the superconductor-insulator transition, the conductance increased with electric field, whereas for films that were becoming superconducting it decreased. Application of magnetic fields to the latter, which reduce the transition temperature and ultimately quench superconductivity, changed the sign of the reponse of the conductance to electric field back to that found for insulators. We propose that this symmetric response to capacitive charging is a consequence of changes in the conductance of the a-Ge layer, and is not a fundamental property of the physics of the superconductor-insulator transition as previously suggested.Comment: 4 pages text, 4 figure

    Neuropsychological constraints to human data production on a global scale

    Get PDF
    Which are the factors underlying human information production on a global level? In order to gain an insight into this question we study a corpus of 252-633 Million publicly available data files on the Internet corresponding to an overall storage volume of 284-675 Terabytes. Analyzing the file size distribution for several distinct data types we find indications that the neuropsychological capacity of the human brain to process and record information may constitute the dominant limiting factor for the overall growth of globally stored information, with real-world economic constraints having only a negligible influence. This supposition draws support from the observation that the files size distributions follow a power law for data without a time component, like images, and a log-normal distribution for multimedia files, for which time is a defining qualia.Comment: to be published in: European Physical Journal
    • ā€¦
    corecore