38,020 research outputs found

    Poly-essential and general Hyperelastic World (brane) models

    Get PDF
    This article provides a unified treatment of an extensive category of non-linear classical field models whereby the universe is represented (perhaps as a brane in a higher dimensional background) in terms of a structure of a mathematically convenient type describable as hyperelastic, for which a complete set of equations of motion is provided just by the energy-momentum conservation law. Particular cases include those of a perfect fluid in quintessential backgrounds of various kinds, as well as models of the elastic solid kind that has been proposed to account for cosmic acceleration. It is shown how an appropriately generalised Hadamard operator can be used to construct a symplectic structure that controles the evolution of small perturbations, and that provides a characteristic equation governing the propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds. The special case of a poly-essential model - the k-essential analogue of an ordinary polytropic fluid - is examined and shown to be well behaved (like the fluid) only if the pressure to density ratio ww is positive.Comment: 16 pages Latex, Contrib. to 10th Peyresq Pysics Meeting, June 2005: Micro and Macro Structures of Spacetim

    Saturated laser fluorescence in turbulent sooting flames at high pressure

    Get PDF
    The primary objective was to develop a quantitative, single pulse, laser-saturated fluorescence (LSF) technique for measurement of radical species concentrations in practical flames. The species of immediate interest was the hydroxyl radical. Measurements were made in both turbulent premixed diffusion flames at pressures between 1 and 20 atm. Interferences from Mie scattering were assessed by doping with particles or by controlling soot loading through variation of equivalence ratio and fuel type. The efficacy of the LSF method at high pressure was addressed by comparing fluorescence and adsorption measurements in a premixed, laminar flat flame at 1-20 atm. Signal-averaging over many laser shots is sufficient to determine the local concentration of radical species in laminar flames. However, for turbulent flames, single pulse measurements are more appropriate since a statistically significant number of laser pulses is needed to determine the probability function (PDF). PDFs can be analyzed to give true average properties and true local kinetics in turbulent, chemically reactive flows

    Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames

    Get PDF
    The efficacy of laser saturated fluorescence (LSF) for OH concentration measurements in high pressure flames was studied theoretically and experimentally. Using a numerical model describing the interaction of hydroxyl with nonuniform laser excitation, the effect of pressure on the validity of the balanced cross-rate model was studied along with the sensitivity of the depopulation of the laser-coupled levels to the ratio of rate coefficients describing: (1) electronic quenching to (sup 2) Sigma (+) (v double prime greater than 0), and (2) vibrational relaxation from v double prime greater than 0 to v double prime = 0. At sufficiently high pressures and near-saturated conditions, the total population of the laser-coupled levels reaches an asymptotic value, which is insensitive to the degree of saturation. When the ratio of electronic quenching to vibrational relaxation is small and the rate of coefficients for rotational transfer in the ground and excited electronic states are nearly the same, the balanced cross-rate model remains a good approximation for all pressures. When the above ratio is large, depopulation of the laser-coupled levels becomes significant at high pressures, and thus the balanced cross-rate model no longer holds. Under these conditions, however, knowledge of the depletion of the laser-coupled levels can be used to correct the model. A combustion facility for operation up to 20 atm was developed to allow LSF measurements of OH in high pressure flames. Using this facility, partial saturation in laminar high pressure (less than or equal to 12.3 atm) C2H6/O2/N2 flames was achieved. To evaluate the limits of the balanced cross-rate model, absorption and calibrated LSF measurements at 3.1 and 6.1 atm were compared. The fluorescence voltages were calibrated with absorption measurements in an atmospheric flame and corrected for their finite sensitivity to quenching with: (1) estimated quenching rate coefficients, and (2) an in situ measurement from a technique employing two fluorescence detection geometries

    A new coordinate transformation for turbulent boundary layer flows

    Get PDF
    The transformation permits a uniform mesh to be used in the computational coordinate which extends across the layer. This coordinate transformation uses the local value of the skin friction coefficient to scale the thickness of the wall layer region, and the local maximum value of turbulent viscosity to scale the boundary-layer thickness. Results are presented for two dimensional boundary layers in both positive and negative pressure gradients and comparisons are made with experimental data and conventional variable-grid results for low speed turbulent boundary-layers. The cases chosen illustrate the capability of this new transformation to capture the boundary layer growth over the full extent of laminar, transitional, and turbulent flow with no grid adjustment as well as its ability to consistently enlarge the wall layer region for accurate shear stress representation. Results of mesh refinement studies using the new coordinate transformation are presented

    Differential rotation of Kepler-71 via transit photometry mapping of faculae and starspots

    Get PDF
    Knowledge of dynamo evolution in solar-type stars is limited by the difficulty of using active region monitoring to measure stellar differential rotation, a key probe of stellar dynamo physics. This paper addresses the problem by presenting the first ever measurement of stellar differential rotation for a main-sequence solar-type star using starspots and faculae to provide complementary information. Our analysis uses modelling of light curves of multiple exoplanet transits for the young solar-type star Kepler-71, utilizing archival data from the Kepler mission. We estimate the physical characteristics of starspots and faculae on Kepler-71 from the characteristic amplitude variations they produce in the transit light curves and measure differential rotation from derived longitudes. Despite the higher contrast of faculae than those in the Sun, the bright features on Kepler-71 have similar properties such as increasing contrast towards the limb and larger sizes than sunspots. Adopting a solar-type differential rotation profile (faster rotation at the equator than the poles), the results from both starspot and facula analysis indicate a rotational shear less than about 0.005 rad d-1, or a relative differential rotation less than 2 per cent, and hence almost rigid rotation. This rotational shear contrasts with the strong rotational shear of zero-age main-sequence stars and the modest but significant shear of the modern-day Sun. Various explanations for the likely rigid rotation are considered

    Structural Covariance in the Hard Sphere Fluid

    Get PDF
    We study the joint variability of structural information in a hard sphere fluid biased to avoid crystallisation and form fivefold symmetric geometric motifs. We show that the structural covariance matrix approach, originally proposed for on-lattice liquids [Ronceray and Harrowell, JCP 2016], can be meaningfully employed to understand structural relationships between different motifs and can predict, within the linear-response regime, structural changes related to motifs distinct from that used to bias the system

    Generalization of Einstein-Lovelock theory to higher order dilaton gravity

    Full text link
    A higher order theory of dilaton gravity is constructed as a generalization of the Einstein-Lovelock theory of pure gravity. Its Lagrangian contains terms with higher powers of the Riemann tensor and of the first two derivatives of the dilaton. Nevertheless, the resulting equations of motion are quasi-linear in the second derivatives of the metric and of the dilaton. This property is crucial for the existence of brane solutions in the thin wall limit. At each order in derivatives the contribution to the Lagrangian is unique up to an overall normalization. Relations between symmetries of this theory and the O(d,d) symmetry of the string-inspired models are discussed.Comment: 18 pages, references added, version to be publishe

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    A Metric for Rapidly Spinning Black Holes Suitable for Strong-Field Tests of the No-Hair Theorem

    Full text link
    According to the no-hair theorem, astrophysical black holes are uniquely characterized by their masses and spins and are described by the Kerr metric. Several parametric deviations from the Kerr metric have been suggested to study observational signatures in both the electromagnetic and gravitational-wave spectra that differ from the expected Kerr signals. Due to the no-hair theorem, however, such spacetimes cannot be regular everywhere outside the event horizons, if they are solutions to the Einstein field equations; they are often characterized by naked singularities or closed time-like loops in the regions of the spacetime that are accessible to an external observer. For observational tests of the no-hair theorem that involve phenomena in the vicinity of the circular photon orbit or the innermost stable circular orbit around a black hole, these pathologies limit the applicability of the metrics only to compact objects that do not spin rapidly. In this paper, we construct a Kerr-like metric which depends on a set of free parameters in addition to its mass and spin and which is regular everywhere outside of the event horizon. We derive expressions for the energy and angular momentum of a particle on a circular equatorial orbit around the black hole and compute the locations of the innermost stable circular orbit and the circular photon orbit. We demonstrate that these orbits change significantly for even moderate deviations from the Kerr metric. The properties of our metric make it an ideally suited spacetime to carry out strong-field tests of the no-hair theorem in the electromagnetic spectrum using the properties of accretion flows around astrophysical black holes of arbitrary spin.Comment: 11 pages, 7 figures, accepted for publication in PR
    • …
    corecore