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We study the joint variability of structural information in a hard sphere fluid biased to avoid crystallisation
and form fivefold symmetric geometric motifs. We show that the structural covariance matrix approach,
originally proposed for on-lattice liquids [Ronceray and Harrowell, JCP 2016], can be meaningfully employed
to understand structural relationships between different motifs and can predict, within the linear-response
regime, structural changes related to motifs distinct from that used to bias the system.

I. INTRODUCTION

Short-range local order is a distinctive feature of the
liquid state. In models of simple liquids such as the
Lennard-Jones liquid or the hard sphere fluid, local struc-
ture has been studied via the measurement of pair corre-
lation functions (which define a characteristic correlation
length)1 or with higher order correlations, such as rings of
particles and recurrent geometric motifs, since the early
times of the theory of liquids, with the pioneering work
of Bernal2,3 and Finney4,5 in “ball-bearing” models.

Since then, more sophisticated probing techniques
have been developed to characterise the local struc-
ture of disordered systems: projection of the nearest
neighbours onto spherical harmonics6,7; the statistics of
Voronoi polyhedra and their facets8; the analysis of com-
mon neighbours9; the match of local motifs with mini-
mum energy clusters10; persistence homology of rings of
particles11 are just a few examples.

The idea underpinning these analyses is that the
knowledge of the degree of local order may shed light
on interesting dynamical and thermodynamical proper-
ties of disordered systems in general and of liquids in
particular. These include possible signatures of precur-
sors to crystallisation in metastable liquids12,13 as well
as the eventual coupling between structural and dynami-
cal heterogeneities in supercooled liquids and glasses (for
a review on structure in dynamically arrested systems
see14).

A major issue in this approach is the fact that different
diagnostic and analysis tools of local structural proper-
ties may lead to different conclusions on the role of local
structure in liquids. For example, the role of crystalline
and icosahedral order in supercooled liquids has been ex-
tensively debated4,8,15–18 and the metrics used to deter-
mine each of those orders play a role in the interpretation
of the results. Understanding how different types of local
structural motifs correlate would permit us to systemat-
ically compare different metrics, and thus open the way
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towards a unified quantitative framework for local liquid
order.

Here we consider the problem of the classification of
local order in a canonical liquid from a simple statistical
point of view. Recent work on a toy model of a lat-
tice liquid with a purely structural energy landscape, the
Favoured Local Structures model19, has demonstrated
the importance of correlations between different struc-
tural geometric motifs present in the liquid. Indeed, the
statistics of high-temperature structural fluctuations pro-
vides key information on the liquid entropy20, while their
correlations provides a quantitative metrics for the sta-
bility/instability of the liquid towards crystal formation,
being good predictors of crystallisation times and surface
tensions21,22. Inspired by these results on a highly ide-
alised system, we study here the structural statistics in
the hard sphere fluid at high packing fraction, a much
more realistic liquid model. Following closely the ap-
proach proposed by Ronceray and Harrowell21, we mea-
sure structural covariances and show how they encode,
at the same time, geometric information on the classifi-
cation itself and physical information on the propensity
of the system to form crystalline or fivefold symmetric
structures.

The article is organised as follows: in Section II we
introduce the studied model and the structural classifi-
cation of reference; in Section III we discuss the struc-
tural covariance formalism and its main results in the
case of hard spheres; in Section IV demonstrate that the
covariance framework allows us to predict quantitatively
the parameter dependence of the liquid structure; and in
Section V we summarise our findings and propose further
directions of research.

II. HARD SPHERES WITH STRUCTURAL BIAS

In the hard-sphere liquid, fivefold symmetry plays an
important role, frustrating the formation of crystalline
order23–25. The degree of fivefold frustration is often
quantified in terms of the number of fivefold symmetric
structures, identified through the pentagonal bipyramid,
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a geometrical arrangement which is formed by a bonded
spindle pair of particles sharing exactly five neighbours.

In order to study the local structure of the system,
including fivefold symmetry, we employ the Topologi-
cal Cluster Classification (TCC)10. This algorithm has
been successfully used in the past to study the struc-
ture of simple liquids26, gels27–29, glasses30,31 and ather-
mal packings32. It identifies a total of 33 structures
based on minimum energy clusters of elementary pair
potentials, such as the Lennard-Jones and Morse liquids.
Its labelling of different structures is inherited from the
labelling of minimum energy clusters of simple liquids
(with Lennard-Jones, Morse or Dzugutov interactions) in
the Cambridge Cluster Database33. Labels are typically
formed by a number and a letter: the former refers to the
number of particles in the motif, the latter indicates the
nature of the potential the motif is a minimum of (letters
from A to F correspond to the Morse potential with in-
creasing range, Z stands for the Dzugutov potential34, K
and W stand for particular forms of the Lennard-Jones
potential and X for a BCC crystalline arrangement)35.

In Fig. 1 we illustrate the relationship between the sev-
eral structures defined in the TCC. We differentiate the
several families of structures present in the classification:
three-fold (tetrahedral), four-fold and five-fold symmet-
ric structures of different numbers of particles are defined.
In particular, the pentagonal bipyramid is termed “7A”.
Hence, we define the total number of pentagonal bipyra-
mids as N7A. In this classification, small structures can
be part of larger structures. Such a multiple counting
contributes to the total number Ni of structures of a
given type i. In contrast with previous studies10, N7A

does not correspond to the number of particles detected
in pentagonal bipyramids, but to the actual number of
(possibly overlapping) bipyramids detected in the liquid,
and similarly for all other structures i. The relation be-
tween the number of bipyramids and the probability to
find a particle in a bipyramid is nontrivial, since particles
can be part of several overlapping bipyramids.

In Reference25, fivefold symmetry in hard spheres has
been studied through the addition of a many-body energy
term Hfivefold = εN7A to the Hamiltonian of the system,
sampling via Monte-Carlo an extended two-dimensional
phase diagram in the packing fraction φ and bias en-
ergy ε (with unit temperature), see Fig. 2. This model
exhibits a rich phase behaviour: biasing the system to
more negative/positive values of ε pushes the fluid-solid
phase transition to higher/lower packing fraction; at
strong enough biases, the system spontaneously nucle-
ates a quasi-crystalline phase rich in five-fold symmet-
ric icosahedra. We refer the reader to Reference25 for a
more complete discussion of the phase behaviour of the
7A-biased hard-sphere fluid.

In the present article, we extend this work and
re-examine runs of N = 2048 hard spheres in the
isothermal-isochoric ensemble for different values of φ,
with a specific interest in the influence of the fivefold
bias ε on the structure of the liquid. This parameter

fully determines the Hamiltonian of the system, as the
hard-sphere interaction has no other contribution than
forbidding configurations with overlaps. This model is
thus entirely specified by a simple local energy landscape,
making it ideally suited for a first study of structural co-
variance in off-lattice systems.

III. STRUCTURAL COVARIANCE FORMALISM

At any given time, the number Ni(t) of structures of
type i in the system will exhibit some deviation to its
mean, reflecting the randomness of the configurations.
The keystone of our statistical analysis of liquid structure
is the covariance matrix Ci,j between these numbers Ni

and Nj of structures of types i and j, which reflects the
correlations between these random variables. We now
explain how we compute this matrix, before discussing
its structure.

We consider Monte-Carlo simulations of biased and un-
biased hard sphere fluids analysed with the Topological
Cluster Classification. We retrieve time series of 1000
Monte-Carlo Sweeps (MCs) of the number of particles
Ni(t) or ni(t) = Ni(t)/N (the intensive concentration of
structures of type i) for all the structures defined in the
classification, an example of which is pictured in Fig.3.
We note that, by definition, an individual particle may
participate in more than a single motif. For example,
it may be a constituent of two or more distinct pentag-
onal bypiramids. This is essential for the identification
of larger structures (for instance, the 10B structure) and
implies that the concentration ni(t) can in principle ex-
ceed unity for some motifs.

Comparing the evolution of, for example, the 6Z and
6A structures with the 7A structure, we notice that while
the former presents a very similar pattern to the pen-
tagonal bipyramid (n6Z concentration increases as n7A

increases), the other shows the opposite behaviour, sug-
gesting that some structures are positively while others
are negatively correlated to the five-fold symmetric struc-
ture. The time average 〈ni〉 = 〈Ni〉/N for a selection of
structures at packing fraction φ = 0.54 is plotted in Fig. 4
and shows that the concentrations of different structures
differ of several orders of magnitude and have very dif-
ferent responses according to the change in the bias ε. A
more complete picture for all the motifs with a significa-
tive average concentration 〈ni〉 > 10−4 is presented in
Fig. 5. Unsurprisingly, small structures typically corre-
spond to large concentrations while the opposite is true,
in general, for structures composed of many particles.
The largest structures such as the FCC, the HCP or 13A
(i.e. icosahedral) motifs in the TCC comprise 13 particles
and all have relatively small concentrations ni ∼ 10−3.
For very negative values of the bias ε, 7A structures are
strongly favoured. This is clearly accompanied by the in-
crease in the number of structures composed of 7A motifs
such as 10B (termed defective icosahedron) or 13A (the
icosahedron) [see Fig. 1 for three-dimensional rendering].
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FIG. 1. Topological cluster classification. (Left) Structural motifs related to threefold symmetric (5A) or four-fold symmetric
(6A and sp4b) local order. The sp4b unit is smaller than the octahedron and three small motifs are derived from it; its subgroup
is highlighted by a dashed line. Rings are represented by colored sticks connecting grey particles, spindle particles are in yellow
and additional particles are in red, as in Reference10. (Right) Structural motifs related to pentagonal (7A or sp5b) local order.
The sp5b unit is smaller than the pentagonal bi-pyramid and only one motif is derived from it, its subgroup highlighted by a
dashed line. Notice the presence of multiple interlaced pentagonal rings in the larger structures such as 10B or 11E.

Correspondingly, the concentrations of structures related
to four-fold symmetry, such as FCC or 11F, steadily drop
at negative bias values.

To obtain the covariances we directly evaluate cross-
correlations of the time-series at specific values of the
packing fraction φ and bias ε. For any pair of structures
i, j in the classification, we define the matrix element

Ci,j(φ, ε) = NCov(ni(φ, ε), nj(φ, ε)) (1)

=
N

tmax − 1

tmax∑
k=1

(ni(k)− 〈ni〉)(nj(k)− 〈nj〉)

(2)

With such a definition, the covariance matrix is an inten-
sive property of the system. It should in principle depend
on the packing fraction φ and the bias ε. However, as we
shall see in Section IV, the knowledge of the covariance
matrix in unbiased conditions C0(φ) = C(φ, ε = 0) is suf-
ficient to quantitatively predict changes in the structural
properties of the liquid.

A. Structure of the covariance matrices

We now discuss the properties of the covariance ma-
trix C(φ, ε), obtained using Eq. 2 over the set of K = 33
structures defined in the Topological Cluster Classifica-
tion that are composed of at least 5 particles. These

structures include, for instance, the bi-tetrahedron (5A),
the octahedron (6A), the 6-particle free energy minimum
for six colloids with depleted mediated attractions (6Z),
the pentagonal bipyramid (7A) as well as much larger
structural motifs such as the defective icosahedron (10B),
the icosahedron (13A) and crystalline motifs related to
FCC (the 13-particle FCC motif) or HCP order (the 13-
particle HCP cluster or the 11-particle 11F cluster). We
show in Fig. 6 four instances of the covariance matrix
for different values of the packing fraction φ and the
bias ε. These structures are sorted according to increas-
ing covariance with the 7A structure for a reference case
(φ = 0.54, ε = 0).

While there are some slight variations in the value of
covariances, the overall structure of these matrices is es-
sentially independent of the values of ε and φ. A block
structure with three groups of structures emerge: the
left and right parts sets of structures exhibit strong pos-
itive correlation within each group and negative corre-
lation to the opposite group, while the central part is a
“no-man’s land” with essentially zero covariances to all
structures, including themselves. The rightmost group of
structures contains 7A and all structures that correlate
positively to it. Employing the language of Ronceray and
Harrowell22, we term the structures j with C7A,j > 0 ag-
onist to the pentagonal bipyramid 7A while those in the
leftmost group, with C7A,j < 0, are antagonist to 7A.

Going into further details, we observe that the largest
covariances with 7A are C7A,6Z and C7A,8B . The 8B
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FIG. 2. Phase diagram of biased hard spheres at high packing
fraction. We explore several state points: at zero bias (red
squares) with packing fractions φ ∈ [0.52, 0.56] and t fixed
packing fraction and variable bias, φ = 0.52, ε ∈ [−0.10, 0.03]
(green circles) and φ = 0.54, ε ∈ [−0.20, 0] (blue crosses).
Phase boundaries are reproduced from25.

structure is directly derived from the 7A bipyramid and
has larger concentrations for combinatorial reasons (it
corresponds to a 7A motif with an additional particle
neighboring one of the two spindle particles, see Fig.1).
The fact that the tetrahedral structure 6Z is a strong ago-
nist is more surprising, as it does not contain any fivefold
motif; we can rationalize its large magnitude by observ-
ing that it has an entropic advantage compared to, for
example, the octahedron (6A)36,37. The positive corre-
lations revealed by the covariance analysis indicates that
this structure overlaps well with 7A. These two examples
illustrate a feature of the agonist (C7A,j > 0) family:
its members are either small structures with elementary
tetrahedral order (5A, 6Z, 7K) or larger structures con-
taining pentagonal rings (10B, 11C,11E, 12B, 12D and
obviously 7A itself). This fact demonstrates that the
covariance formalism is capable of detecting structural
relationships between arbitrary motifs.

Interestingly, the family of antagonist structures
(C7A,j < 0) displays positive mutual covariances Cij >
0 : i, j ∈ {antagonist}, so that the top-left corner of the
covariance matrix contains positive entries. Again, we
can identify in the TCC definitions the geometric origin
of these positive cross correlations: antagonist structures
include the octahedron (6A), combinations of 6A such
as 9K, structures with pairs of square rings such as 9X
and 9A, or directly sections of crystalline cells such as
the 11E, 11F and 12E motifs and finally the HCP and
FCC structures. This indicates that, within the Topo-

0 1000500
MC

7A

6Z

n 
(t) i

6A

FIG. 3. Time evolution in Monte-Carlo sweeps (MCs) of the
concentration ni for the four-fold symmetric 6A, three-fold
symmetric 7A and the five-fold symmetric 7A. Concentration
ni are rescaled and shifted to more visually highlight time
correlations (and anticorrelations) between the different time
signals.

0.2 0.1 0.0
 / kBT

10 4

10 3

10 2

10 1

100

101

102

103
n i

FCC
6A

11F
9A

7A
10B

6Z
13A

FIG. 4. Average concentration of detected structures, 〈ni〉, in
the system as a function of the bias ε towards the pentagonal
bipyramid (7A) structure. The packing fraction is constant
at φ = 0.54.

logical Cluster Classification, most of the antagonists to
fivefold symmetry are of crystalline nature. The notable
exception is provided by the 8A cluster (composed of very
distorted pentagonal rings, strongly correlated with the
6Z tetrahedra and the 6A octahedron), and the 13B clus-
ter (composed of two well aligned 7A clusters and hence
mismatching both crystalline and icosahedral order).

We note that the while both the triangular bipyramid
5A and the octahedron 6A are originally both in the min-
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FIG. 5. Effect of negative biases on the time-averaged concentrations 〈ni〉 at packing fraction φ = 0.54 for structures in
the Topological Cluster Classification with 〈ni〉 > 10−4. Motifs that are agonist to 7A (shaded area) show an increase in
concentration while the opposite occurs for the antagonist family of structures.

imal energy structures of the HCP crystal in the case of
other simple liquids such as the Lennard-Jones model10,
here they appear to play two different roles, the former
correlating well with the emergence of pentagonal rings
while the latter anticorrelates with it, promoting crys-
talline order instead.

Finally, a no-man’s land of structures of effectively zero
covariance separates the two families of agonist and an-
tagonist structures. It includes structures such as 10W or
12K which have been defined in the TCC from minimum
energy clusters of Lennard-Jones binary mixtures popu-
lar in the literature of the glass transition (the Wahn-
ström38 and the Kob-Andersen39 respectively). The co-
variances for such clusters are null simply because the
concentrations n10W and n12K are close to zero in the
hard sphere liquid.

B. Dependence on packing fraction and bias

As the packing fraction or the bias vary, we move into
different regions of the phase diagram in Fig. 2. Taking
the high packing fraction unbiased point φ = 0.54, ε = 0
(a metastable overcompressed liquid before nucleation
occurs), we show in Fig. 6 that the overall structure of
the covariance matrix is broadly unchanged as we either
reduce the packing fraction or bias the system to more
negative values of ε, suppressing crystallization. We ob-
serve that, at the lower packing fraction, the antagonist
family is restricted to a smaller number of structures,
as large crystalline clusters such as 11F , FCC or 12E
present small covariances, due to the smaller concentra-
tions of n11F , nFCC and n12E respectively.

In Fig. 7 we study the instructive case of the defective
icosahedron (10B) structure and its covariances with no-
table members of the agonist and antagonist families.

This is an agonist structure to fivefold symmetry, as it is
composed of three overlapping 7A motifs. The average
concentration of this motif increases both as the packing
fraction is increased and as the bias is more negative (see,
for instance, Fig.4). It is an important structure in hard
sphere glasses as it dominates the free energy landscape
in the metastable liquid branch at high densities18,40. In
Fig. 7(a) we observe that increasing the packing frac-
tion at zero bias leads to an increase in the magnitude
of the covariance coefficients, which become more nega-
tive with the antagonist structures FCC, 6A, 11F and 9A
and more positive with other agonist structures such as
7A, 6Z and the icosahedron 13A. This is an immediate
consequence of the increase in the concentration of 10B
at higher volume fractions compared to other structures,
see Fig. 5.

If we consider the dependence on the bias, Fig. 7(b),
we observe an analogous behaviour at constant packing
fraction φ = 0.54. We also note that covariances with
rare structures, such as the FCC crystalline motif, are
very small and may flip sign with varying packing frac-
tion/bias. This is the indication that more statistics (i.e.
longer time series) are needed to more accurately esti-
mate these covariances.

IV. LINEAR-RESPONSE PREDICTIONS

The knowledge of the covariance matrix does not only
provide insight on the geometrical relationship between
structures; it also allows us to make quantitative predic-
tions on the parameter dependence of the liquid struc-
ture. Indeed, we can apply to our system the fluctuation-
response relation proposed by Ronceray and Harrowell
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FIG. 6. Four examples of covariance matrices for different values of the bias ε and packing fraction φ: (a) ε = 0, φ = 0.52,
(b) ε = 0, φ = 0.54; (c) ε = −0.05, φ = 0.52; (d) ε = −0.05, φ = 0.54. Very negative matrix elements are in blue while very
positive matrix elements are in yellow. Structures are sorted according to the ascending order of their respective covariance
with the pentagonal bipyramid 7A at a unbiased fixed state point φ = 0.54, ε = 0.0. Notice the logarithmic color scale.

in21,22 for on-lattice models, which reads

〈ni(ε)〉 = 〈n0
i 〉 −

∑
structures j

Ci,jεj ,+O(ε2) (3)

where εj is the vector of energy biases associated to each
structure, i, such that the Hamiltonian isH = N

∑
i niεi.

The derivation remains correct in our case, where the
only nonzero bias is for the pentagonal bipyramid i = 7A.
This results in a simple expression,

〈ni(φ, ε)〉 = 〈n0
i (φ)〉 − εC0

i,7A +O(ε2) (4)

where n0
i (φ) is concentration of structure i for the un-

biased system at packing fraction φ, and C0
7A,i is the

covariance matrix element between i and 7A at packing
fraction φ.

Equation 4 provides an exact prediction for the first-
order dependence of the structural composition of the
liquid on the applied structural bias. We demonstrate its
validity in Fig. 8, where we compare this linear-response
approximation and the measured change in concentra-
tions ∆ni = 〈ni(ε)〉 − 〈n0

i 〉 for four representative struc-
tures at fixed packing fraction φ = 0.54: the 9A, FCC
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a

b

FIG. 7. Example of the (a) packing fraction and (b) bias de-
pendence of the covariance values between the agonist struc-
ture 10B and a selection of agonist and antagonist structures.
In (a) the bias is ε = 0 and in (b) the packing fraction is
φ = 0.54.

and 11F (antagonist family), and 10B (agonist family).
The linear prediction quantitatively captures the bias de-
pendency of the considered antagonist structures. For
the agonist structure 10B, we observe higher-order de-
viations for large biases ε ≤ −0.10, with an accelerated
accumulation of these structures that is not captured by
our linear theory. Note that a similar trend is observed
for agonist structures in lattice models22.

Importantly, these results demonstrate that the ac-
curate knowledge of the covariance coefficient at a zero
bias is sufficient to infer with quantitative accuracy the
structural changes in the system for biases as large as
ε ≈ ±0.1. This is not specific to structure 7A. In princi-
ple, we could consider biasing the system towards any sin-
gle structure, or any weighted combination of structures
as in Equation 3: our approach encompasses complex liq-
uids described by an arbitrary set of biases εi, providing
a predictive tool to quantitatively assess the structure of
any liquid at reasonably low value of the biases, or equiv-
alently at sufficiently high temperature. Beyond the lin-
ear response regime, these results become quantitatively
inaccurate, but retain a qualitative pertinence: for in-
stance, crystallization will become essentially impossible
if the concentrations of all four-fold crystalline structures
become too low.

V. CONCLUSIONS

Through the analysis of structural covariances in the
biased hard sphere fluid we have shown that it is possi-
ble to understand how fivefold local order affects other

competing motifs, such as those with four-fold symmetry
which are related to crystalline order. We have discussed
how covariances allow us to identify structural relation-
ships between different motifs and we have illustrated
how this applies to the particular case of the Topological
Cluster Classification. Structural covariance reveals the
existence of two main families of structures in the classi-
fication, pertaining to fivefold symmetric and crystal-like
structures respectively. An interesting line of research
would be to extend the approach to other classifications
(such as the Voronoi indexing) and to compare different
classification strategies according to the metric provided
by the covariances.

In our study of the hard-sphere fluid we have found
that the covariance approach is predictive in a wide range
of bias values, estimating correctly, in the linear-response
regime, structural changes for any of the structures clas-
sified in the Topological Cluster Classification.

Our work demonstrates how an analysis based on
structural covariances can be employed to investigate off-
lattice models, providing a first proof of principle in the
case of hard spheres. Other aspects of structural corre-
lations in the fluid phase will deserve further study and
comparison with the original on-lattice results. For ex-
ample, in Ref.22 it has been shown that the so-called
crystal affinity QX := ∂nX/∂(1/T ) can be expressed as
QX = −

∑
j CX,jεX,j derived from the covariance co-

efficients between the crystalline motif X and the re-
maining motifs. Remarkably, in Ref.22 the affinity Q
displays a characteristic anti-correlation with the crystal-
lization times for the on-lattice systems. Understanding
how this relation holds in the case of off-lattice models
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0.2 0.1 0.0

2.5
0.0

11F

0.2 0.1 0.0
0.5

0.0

n i
n i

n i

9A

0.2 0.1 0.0
 / kBT

0

1

n i

10B

10-2

FIG. 8. Tests of the linear response regime: the symbols rep-
resent the variations in concentration ∆ni = ni(ε)− n0

i with
vertical bars corresponding to one single standard deviation
as computed from the Monte-Carlo trajectory. The straight
orange lines are the predictions of Eq. 4, with covariances
evaluated at ε = 0. For all the plots, the packing fraction is
φ = 0.54.
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and how it depends on the specific identification of crys-
talline motifs (e.g. FCC, 11F or others such as bond order
parameters7,41) according to different structural descrip-
tors will be the subject of further work.

More generally, alternative routes to the calculation
of the covariance matrix may provide efficient methods
to estimate structural changes for a given set of struc-
tures: nonequilibrium protocols (such as shearing) are a
potential avenue to measure structural couplings and co-
variances quickly and at a lower computational cost than
biased Monte-Carlo. On the experimental side, since the
knowledge of the local motifs is key to our approach,
colloidal experiments (where the individual particle co-
ordinates can be resolved) are most suitable for a test
in the laboratory of the predictive power of the struc-
tural covariance analysis. However, since the covariances
are computed between concentrations of different struc-
tures, spatial resolution is only necessary to identify cho-
sen motifs. This means that as long as we are able to es-
timate local concentrations of particular motifs and pre-
serve sample to sample variations, it is possible to com-
pute covariances between distinct motifs even without
the precise knowledge of all of the atomic positions. Ad-
vanced scattering techniques on molecular liquids (such
as angstrom-beam electron diffraction42,43) may provide
the route to measure such concentration and compute
covariances between different sub-sampled regions of a
dense, or supercooled, liquid.
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