212 research outputs found

    Analysis of methods

    Get PDF
    Information is one of an organization's most important assets. For this reason the development and maintenance of an integrated information system environment is one of the most important functions within a large organization. The Integrated Information Systems Evolution Environment (IISEE) project has as one of its primary goals a computerized solution to the difficulties involved in the development of integrated information systems. To develop such an environment a thorough understanding of the enterprise's information needs and requirements is of paramount importance. This document is the current release of the research performed by the Integrated Development Support Environment (IDSE) Research Team in support of the IISEE project. Research indicates that an integral part of any information system environment would be multiple modeling methods to support the management of the organization's information. Automated tool support for these methods is necessary to facilitate their use in an integrated environment. An integrated environment makes it necessary to maintain an integrated database which contains the different kinds of models developed under the various methodologies. In addition, to speed the process of development of models, a procedure or technique is needed to allow automatic translation from one methodology's representation to another while maintaining the integrity of both. The purpose for the analysis of the modeling methods included in this document is to examine these methods with the goal being to include them in an integrated development support environment. To accomplish this and to develop a method for allowing intra-methodology and inter-methodology model element reuse, a thorough understanding of multiple modeling methodologies is necessary. Currently the IDSE Research Team is investigating the family of Integrated Computer Aided Manufacturing (ICAM) DEFinition (IDEF) languages IDEF(0), IDEF(1), and IDEF(1x), as well as ENALIM, Entity Relationship, Data Flow Diagrams, and Structure Charts, for inclusion in an integrated development support environment

    Reconstructing cell cycle and disease progression using deep learning

    Get PDF
    We show that deep convolutional neural networks combined with nonlinear dimension reduction enable reconstructing biological processes based on raw image data. We demonstrate this by reconstructing the cell cycle of Jurkat cells and disease progression in diabetic retinopathy. In further analysis of Jurkat cells, we detect and separate a subpopulation of dead cells in an unsupervised manner and, in classifying discrete cell cycle stages, we reach a sixfold reduction in error rate compared to a recent approach based on boosting on image features. In contrast to previous methods, deep learning based predictions are fast enough for on-the-fly analysis in an imaging flow cytometer

    Anaerobic Carbon Monoxide Dehydrogenase Diversity in the Homoacetogenic Hindgut Microbial Communities of Lower Termites and the Wood Roach

    Get PDF
    Anaerobic carbon monoxide dehydrogenase (CODH) is a key enzyme in the Wood-Ljungdahl (acetyl-CoA) pathway for acetogenesis performed by homoacetogenic bacteria. Acetate generated by gut bacteria via the acetyl-CoA pathway provides considerable nutrition to wood-feeding dictyopteran insects making CODH important to the obligate mutualism occurring between termites and their hindgut microbiota. To investigate CODH diversity in insect gut communities, we developed the first degenerate primers designed to amplify cooS genes, which encode the catalytic (β) subunit of anaerobic CODH enzyme complexes. These primers target over 68 million combinations of potential forward and reverse cooS primer-binding sequences. We used the primers to identify cooS genes in bacterial isolates from the hindgut of a phylogenetically lower termite and to sample cooS diversity present in a variety of insect hindgut microbial communities including those of three phylogenetically-lower termites, Zootermopsis nevadensis, Reticulitermes hesperus, and Incisitermes minor, a wood-feeding cockroach, Cryptocercus punctulatus, and an omnivorous cockroach, Periplaneta americana. In total, we sequenced and analyzed 151 different cooS genes. These genes encode proteins that group within one of three highly divergent CODH phylogenetic clades. Each insect gut community contained CODH variants from all three of these clades. The patterns of CODH diversity in these communities likely reflect differences in enzyme or physiological function, and suggest that a diversity of microbial species participate in homoacetogenesis in these communities

    MALDI Profiling of Human Lung Cancer Subtypes

    Get PDF
    Proteomics is expected to play a key role in cancer biomarker discovery. Although it has become feasible to rapidly analyze proteins from crude cell extracts using mass spectrometry, complex sample composition hampers this type of measurement. Therefore, for effective proteome analysis, it becomes critical to enrich samples for the analytes of interest. Despite that one-third of the proteins in eukaryotic cells are thought to be phosphorylated at some point in their life cycle, only a low percentage of intracellular proteins is phosphorylated at a given time.In this work, we have applied chromatographic phosphopeptide enrichment techniques to reduce the complexity of human clinical samples. A novel method for high-throughput peptide profiling of human tumor samples, using Parallel IMAC and MALDI-TOF MS, is described. We have applied this methodology to analyze human normal and cancer lung samples in the search for new biomarkers. Using a highly reproducible spectral processing algorithm to produce peptide mass profiles with minimal variability across the samples, lineal discriminant-based and decision tree–based classification models were generated. These models can distinguish normal from tumor samples, as well as differentiate the various non–small cell lung cancer histological subtypes.A novel, optimized sample preparation method and a careful data acquisition strategy is described for high-throughput peptide profiling of small amounts of human normal lung and lung cancer samples. We show that the appropriate combination of peptide expression values is able to discriminate normal lung from non-small cell lung cancer samples and among different histological subtypes. Our study does emphasize the great potential of proteomics in the molecular characterization of cancer

    Comparative genetic, proteomic and phosphoproteomic analysis of C. <i>elegans </i>embryos with a focus on <i>ham</i>-1/STOX and <i>pig</i>-1/MELK in dopaminergic neuron development

    Get PDF
    Asymmetric cell divisions are required for cellular diversity and defects can lead to altered daughter cell fates and numbers. In a genetic screen for C. elegans mutants with defects in dopaminergic head neuron specification or differentiation, we isolated a new allele of the transcription factor HAM-1 [HSN (Hermaphrodite-Specific Neurons) Abnormal Migration]. Loss of both HAM-1 and its target, the kinase PIG-1 [PAR-1(I)-like Gene], leads to abnormal dopaminergic head neuron numbers. We identified discrete genetic relationships between ham-1, pig-1 and apoptosis pathway genes in dopaminergic head neurons. We used an unbiased, quantitative mass spectrometry-based proteomics approach to characterise direct and indirect protein targets and pathways that mediate the effects of PIG-1 kinase loss in C. elegans embryos. Proteins showing changes in either abundance, or phosphorylation levels, between wild-type and pig-1 mutant embryos are predominantly connected with processes including cell cycle, asymmetric cell division, apoptosis and actomyosin-regulation. Several of these proteins play important roles in C. elegans development. Our data provide an in-depth characterisation of the C. elegans wild-type embryo proteome and phosphoproteome and can be explored via the Encyclopedia of Proteome Dynamics (EPD) - an open access, searchable online database

    High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets

    Get PDF
    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets

    LC-MSsim – a simulation software for liquid chromatography mass spectrometry data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass Spectrometry coupled to Liquid Chromatography (LC-MS) is commonly used to analyze the protein content of biological samples in large scale studies. The data resulting from an LC-MS experiment is huge, highly complex and noisy. Accordingly, it has sparked new developments in Bioinformatics, especially in the fields of algorithm development, statistics and software engineering. In a quantitative label-free mass spectrometry experiment, crucial steps are the detection of peptide features in the mass spectra and the alignment of samples by correcting for shifts in retention time. At the moment, it is difficult to compare the plethora of algorithms for these tasks. So far, curated benchmark data exists only for peptide identification algorithms but no data that represents a ground truth for the evaluation of feature detection, alignment and filtering algorithms.</p> <p>Results</p> <p>We present <it>LC-MSsim</it>, a simulation software for LC-ESI-MS experiments. It simulates ESI spectra on the MS level. It reads a list of proteins from a FASTA file and digests the protein mixture using a user-defined enzyme. The software creates an LC-MS data set using a predictor for the retention time of the peptides and a model for peak shapes and elution profiles of the mass spectral peaks. Our software also offers the possibility to add contaminants, to change the background noise level and includes a model for the detectability of peptides in mass spectra. After the simulation, <it>LC-MSsim </it>writes the simulated data to mzData, a public XML format. The software also stores the positions (monoisotopic m/z and retention time) and ion counts of the simulated ions in separate files.</p> <p>Conclusion</p> <p><it>LC-MSsim </it>generates simulated LC-MS data sets and incorporates models for peak shapes and contaminations. Algorithm developers can match the results of feature detection and alignment algorithms against the simulated ion lists and meaningful error rates can be computed. We anticipate that <it>LC-MSsim </it>will be useful to the wider community to perform benchmark studies and comparisons between computational tools.</p

    PTRF/Cavin-1 and MIF Proteins Are Identified as Non-Small Cell Lung Cancer Biomarkers by Label-Free Proteomics

    Get PDF
    With the completion of the human genome sequence, biomedical sciences have entered in the “omics” era, mainly due to high-throughput genomics techniques and the recent application of mass spectrometry to proteomics analyses. However, there is still a time lag between these technological advances and their application in the clinical setting. Our work is designed to build bridges between high-performance proteomics and clinical routine. Protein extracts were obtained from fresh frozen normal lung and non-small cell lung cancer samples. We applied a phosphopeptide enrichment followed by LC-MS/MS. Subsequent label-free quantification and bioinformatics analyses were performed. We assessed protein patterns on these samples, showing dozens of differential markers between normal and tumor tissue. Gene ontology and interactome analyses identified signaling pathways altered on tumor tissue. We have identified two proteins, PTRF/cavin-1 and MIF, which are differentially expressed between normal lung and non-small cell lung cancer. These potential biomarkers were validated using western blot and immunohistochemistry. The application of discovery-based proteomics analyses in clinical samples allowed us to identify new potential biomarkers and therapeutic targets in non-small cell lung cancer

    Tomato TFT1 Is Required for PAMP-Triggered Immunity and Mutations that Prevent T3S Effector XopN from Binding to TFT1 Attenuate Xanthomonas Virulence

    Get PDF
    XopN is a type III effector protein from Xanthomonas campestris pathovar vesicatoria that suppresses PAMP-triggered immunity (PTI) in tomato. Previous work reported that XopN interacts with the tomato 14-3-3 isoform TFT1; however, TFT1's role in PTI and/or XopN virulence was not determined. Here we show that TFT1 functions in PTI and is a XopN virulence target. Virus-induced gene silencing of TFT1 mRNA in tomato leaves resulted in increased growth of Xcv ΔxopN and Xcv ΔhrpF demonstrating that TFT1 is required to inhibit Xcv multiplication. TFT1 expression was required for Xcv-induced accumulation of PTI5, GRAS4, WRKY28, and LRR22 mRNAs, four PTI marker genes in tomato. Deletion analysis revealed that the XopN C-terminal domain (amino acids 344–733) is sufficient to bind TFT1. Removal of amino acids 605–733 disrupts XopN binding to TFT1 in plant extracts and inhibits XopN-dependent virulence in tomato, demonstrating that these residues are necessary for the XopN/TFT1 interaction. Phos-tag gel analysis and mass spectrometry showed that XopN is phosphorylated in plant extracts at serine 688 in a putative 14-3-3 recognition motif. Mutation of S688 reduced XopN's phosphorylation state but was not sufficient to inhibit binding to TFT1 or reduce XopN virulence. Mutation of S688 and two leucines (L64,L65) in XopN, however, eliminated XopN binding to TFT1 in plant extracts and XopN virulence. L64 and L65 are required for XopN to bind TARK1, a tomato atypical receptor kinase required for PTI. This suggested that TFT1 binding to XopN's C-terminal domain might be stabilized via TARK1/XopN interaction. Pull-down and BiFC analyses show that XopN promotes TARK1/TFT1 complex formation in vitro and in planta by functioning as a molecular scaffold. This is the first report showing that a type III effector targets a host 14-3-3 involved in PTI to promote bacterial pathogenesis
    corecore