941 research outputs found

    Marqueurs atmosphériques d'exposition aux particules Diesel

    Get PDF
    L'évolution du parc français d'automobiles particulières a pris depuis une vingtaine d'années un essor formidable. De près de 12 millions de voitures en 1970, il est passé à 23,5 millions en 1991, soit un doublement. Une telle augmentation entraîne bien évidemment un accroissement de la pollution atmosphérique d'origine automobile et a conduit la Communauté Européenne à réglementer les émissions dès 1970. La pollution automobile était alors traitée comme un problème global, tous types de véhicules confondus. Depuis, deux événements sont venus modifier les règle

    Keck Observatory Laser Guide Star Adaptive Optics Discovery and Characterization of a Satellite to the Large Kuiper Belt Object 2003 EL_(61)

    Get PDF
    The newly commissioned laser guide star adaptive optics system at Keck Observatory has been used to discover and characterize the orbit of a satellite to the bright Kuiper Belt object 2003 EL_(61). Observations over a 6 month period show that the satellite has a semimajor axis of 49,500 ± 400 km, an orbital period of 49.12 ± 0.03 days, and an eccentricity of 0.050 ± 0.003. The inferred mass of the system is (4.2 ± 0.1) × 10^(21) kg, or ~32% of the mass of Pluto and 28.6% ± 0.7% of the mass of the Pluto-Charon system. Mutual occultations occurred in 1999 and will not occur again until 2138. The orbit is fully consistent neither with one tidally evolved from an earlier closer configuration nor with one evolved inward by dynamical friction from an earlier more distant configuration

    Satellites of the largest Kuiper Belt objects

    Get PDF
    We have searched the four brightest objects in the Kuiper Belt for the presence of satellites using the newly commissioned Keck Observatory Laser Guide Star Adaptive Optics system. Satellites are seen around three of the four objects: Pluto (whose satellite Charon is well-known and whose recently discovered smaller satellites are too faint to be detected), 2003 EL61 (where a second satellite is seen in addition to the previously known satellite), and 2003 UB313 (where a satellite is seen for the first time). The object 2005 FY9, the brightest Kuiper Belt object (KBO) after Pluto, does not have a satellite detectable within 0".4 with a brightness of more than 1% of the primary. The presence of satellites around three of the four brightest KBOs is inconsistent with the fraction of satellites in the Kuiper Belt at large at the 99.2% confidence level, suggesting a different formation mechanism for these largest KBO satellites. The two satellites of 2003 EL61, and the one satellite of 2003 UB313, with fractional brightnesses of 5% and 1.5%, and 2%, of their primaries, respectively, are significantly fainter relative to their primaries than other known KBO satellites, again pointing to possible differences in their origin

    A hydrodynamic study of the circumstellar envelope of alpha Scorpii

    Full text link
    Context: Both the absolute mass-loss rates and the mechanisms that drive the mass loss of late-type supergiants are still not well known. Binaries such as alpha Sco provide the most detailed empirical information about the winds of these stars. Aims: The goal was to improve the binary technique for the determination of the mass-loss rate of alpha Sco A by including a realistic density distribution and velocity field from hydrodynamic and plasma simulations. Methods: We performed 3D hydrodynamic simulations of the circumstellar envelope of alpha Sco in combination with plasma simulations accounting for the heating, ionization, and excitation of the wind by the radiation of alpha Sco B. These simulations served as the basis for an examination of circumstellar absorption lines in the spectrum of alpha Sco B as well as of emission lines from the Antares nebula. Results: The present model of the extended envelope of alpha Sco reproduces some of the structures that were observed in the circumstellar absorption lines in the spectrum of alpha Sco B. Our theoretical density and velocity distributions of the outflow deviate considerably from a spherically expanding model, which was used in previous studies. This results in a higher mass-loss rate of (2 +/- 0.5) x 10^-6 M_sun/yr. The hot H II region around the secondary star induces an additional acceleration of the wind at large distances from the primary, which is seen in absorption lines of Ti II and Cr II at -30 km/s.Comment: 12 pages, 14 figures, accepted for publication in A&

    Fire History of the Appalachian Region: A Review and Synthesis

    Get PDF
    The importance of fire in shaping Appalachian vegetation has become increasingly apparent over the last 25 years. This period has seen declines in oak (Quercus) and pine (Pinus) forests and other fire-dependent ecosystems, which in the near-exclusion of fire are being replaced by fire-sensitive mesophytic vegetation. These vegetation changes imply that Appalachian vegetation had developed under a history of burning before the fire-exclusion era, a possibility that has motivated investigations of Appalachian fire history using proxy evidence. Here we synthesize those investigations to obtain an up-to-date portrayal of Appalachian fire history. We organize the report by data type, beginning with studies of high-resolution data on recent fires to provide a context for interpreting the lower-resolution proxy data. Each proxy is addressed in a subsequent chapter, beginning with witness trees and continuing to fire-scarred trees, stand age structure, and soil and sediment charcoal. Taken together, these proxies portray frequent burning in the past. Fires had occurred at short intervals (a few years) for centuries before the fire-exclusion era. Indeed, burning has played an important ecological role for millennia. Fires were especially common and spatially extensive on landscapes with large expanses of oak and pine forest, notably in the Ridge and Valley province and the Blue Ridge Mountains. Burning favored oak and pine at the expense of mesophytic competitors, but fire exclusion has enabled mesophytic plants to expand from fire-sheltered sites onto dry slopes that formerly supported pyrogenic vegetation. These changes underscore the need to restore fire-dependent ecosystems

    Morphodynamics of nearshore rhythmic sandbars in a mixed-energy environment (SW France): I. Mapping beach changes using visible satellite imagery

    Get PDF
    This paper presents a new method to analyze the morphology and migration of shallow water sandbanks based on the retrieval of maps from high-resolution Spot satellite imagery. This approach was applied to the study of intertidal ridge and runnel systems and subtidal crescents that border the southwest coast of France. Maps were obtained from 16 Spot images recorded between 1986 and 2000. Ridge and runnel shapes, with regard to a reference level, were delineated using a watercolor reflectance code parameterized and validated with field data. Crescent plan shapes, which appear on the images due to water transparency or breaking-induced foam, were directly extracted. The spatial maps show that, in conformity with field surveys, the mean alongshore spacing of intertidal systems and crescents range from 370 ± 146 m (variability is indicated by standard deviation) to 462 ± 188 m, and from 579 ± 200 to 818 ± 214 m, respectively. Several couples of images also show that ridge and runnel systems and crescents move in the longshore drift direction (southward) by about 2.4–3.1 and 1 m day−1, respectively. Alongshore migration rates of intertidal systems are confirmed by field surveys, whilst crescent dynamics cannot be validated because there is no in situ data available. To complete these measurements, an analysis of the influence of wave climate on both the shape and movements of these rhythmic sedimentary patterns is proposed in a companion paper

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    Wearable Haptic Devices for Gait Re-education by Rhythmic Haptic Cueing

    Get PDF
    This research explores the development and evaluation of wearable haptic devices for gait sensing and rhythmic haptic cueing in the context of gait re-education for people with neurological and neurodegenerative conditions. Many people with long-term neurological and neurodegenerative conditions such as Stroke, Brain Injury, Multiple Sclerosis or Parkinson’s disease suffer from impaired walking gait pattern. Gait improvement can lead to better fluidity in walking, improved health outcomes, greater independence, and enhanced quality of life. Existing lab-based studies with wearable devices have shown that rhythmic haptic cueing can cause immediate improvements to gait features such as temporal symmetry, stride length, and walking speed. However, current wearable systems are unsuitable for self-managed use for in-the-wild applications with people having such conditions. This work aims to investigate the research question of how wearable haptic devices can help in long-term gait re-education using rhythmic haptic cueing. A longitudinal pilot study has been conducted with a brain trauma survivor, providing rhythmic haptic cueing using a wearable haptic device as a therapeutic intervention for a two-week period. Preliminary results comparing pre and post-intervention gait measurements have shown improvements in walking speed, temporal asymmetry, and stride length. The pilot study has raised an array of issues that require further study. This work aims to develop and evaluate prototype systems through an iterative design process to make possible the self-managed use of such devices in-the-wild. These systems will directly provide therapeutic intervention for gait re-education, offer enhanced information for therapists, remotely monitor dosage adherence and inform treatment and prognoses over the long-term. This research will evaluate the use of technology from the perspective of multiple stakeholders, including clinicians, carers and patients. This work has the potential to impact clinical practice nationwide and worldwide in neuro-physiotherapy
    • …
    corecore