3,597 research outputs found
Oscillating Fracture in Rubber
We have found an oscillating instability of fast-running cracks in thin
rubber sheets. A well-defined transition from straight to oscillating cracks
occurs as the amount of biaxial strain increases. Measurements of the amplitude
and wavelength of the oscillation near the onset of this instability indicate
that the instability is a Hopf bifurcation
A Novel Longitudinal Mode in the Coupled Quantum Chain Compound KCuF3
Inelastic neutron scattering measurements are reported that show a new
longitudinal mode in the antiferromagnetically ordered phase of the spin-1/2
quasi-one-dimensional antiferromagnet KCuF3. This mode signals the cross-over
from one-dimensional to three-dimensional behavior and indicates a reduction in
the ordered spin moment of a spin-1/2 antiferromagnet. The measurements are
compared with recent quantum field theory results and are found to be in
excellent agreement. A feature of the data not predicted by theory is a damping
of the mode by decay processes to the transverse spin-wave branches.Comment: 9 pages of text plus 4 postscript figures (1 color
Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7
We present synchrotron x-ray diffraction, neutron powder diffraction and
time-of-flight inelastic neutron scattering measurements on the rare earth
pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and
cystal field states. The structural characterization by high-resolution
synchrotron x-ray diffraction confirms that the pyrochlore structure has no
detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals
long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with
propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1
K. The ordered moment is much smaller than the estimated moment of 2.65
\mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that
the ordering is partially suppressed by quantum fluctuations. The strong Ising
anisotropy is further confirmed by the inelastic neutron scattering data which
reveals a well-isolated dipolar-octupolar type Kramers doublet ground state.
The crystal field level scheme and ground state wavefunction have been
determined.Comment: 12 pages, 15 figures, 2 table
Design Thinking Accelerated Leadership: Transforming Self, Transforming Community
Higher education institutions are continually seeking to recruit nontraditional adult students yet struggle at the same time to meet their needs effectively. The following case study offers strategies to address this situation by documenting the pedagogical design and initial outcomes of an interdisciplinary, nineteen-month leadership-themed liberal studies undergraduate degree completion program at Grand Valley State University. As an innovative, accelerated, hybrid cohort model, it incorporates a wide range of high-impact practices focused on developing the skills leaders use and employers require. The curriculum integrates practices from motivational and experiential learning, community-based learning, and design thinking to scaffold students\u27 learning across their courses. The program thereby encourages students to wrestle with the complexity of social issues in their communities and develop the skills and virtues necessary for addressing those problems. As a case study, this article is particularly relevant for educators and administrators hoping to uncover a means for catalyzing innovative co-participatory engagement projects that engage with the needs of the surrounding community in a format supportive of nontraditional learners
Spinon confinement in a quasi one dimensional anisotropic Heisenberg magnet
Confinement is a process by which particles with fractional quantum numbers
bind together to form quasiparticles with integer quantum numbers. The
constituent particles are confined by an attractive interaction whose strength
increases with increasing particle separation and as a consequence, individual
particles are not found in isolation. This phenomenon is well known in particle
physics where quarks are confined in baryons and mesons. An analogous
phenomenon occurs in certain magnetic insulators; weakly coupled chains of
spins S=1/2. The collective excitations in these systems is spinons (S=1/2). At
low temperatures weak coupling between chains can induce an attractive
interaction between pairs of spinons that increases with their separation and
thus leads to confinement. In this paper, we employ inelastic neutron
scattering to investigate the spinon confinement in the quasi-1D S=1/2 XXZ
antiferromagnet SrCo2V2O8. Spinon excitations are observed above TN in
quantitative agreement with established theory. Below TN the pairs of spinons
are confined and two sequences of meson-like bound states with longitudinal and
transverse polarizations are observed. Several theoretical approaches are used
to explain the data. A new theoretical technique based on Tangent-space Matrix
Product States gives a very complete description of the data and provides good
agreement not only with the energies of the bound modes but also with their
intensities. We also successfully explained the effect of temperature on the
excitations including the experimentally observed thermally induced resonance
between longitudinal modes below TN ,and the transitions between thermally
excited spinon states above TN. In summary, our work establishes SrCo2V2O8 as a
beautiful paradigm for spinon confinement in a quasi-1D quantum magnet and
provides a comprehensive picture of this process.Comment: 17 pages, 18 figures, submitted to PR
- …