3,583 research outputs found

    Solar sail formation flying for deep-space remote sensing

    Get PDF
    In this paper we consider how 'near' term solar sails can be used in formation above the ecliptic plane to provide platforms for accurate and continuous remote sensing of the polar regions of the Earth. The dynamics of the solar sail elliptical restricted three-body problem (ERTBP) are exploited for formation flying by identifying a family of periodic orbits above the ecliptic plane. Moreover, we find a family of 1 year periodic orbits where each orbit corresponds to a unique solar sail orientation using a numerical continuation method. It is found through a number of example numerical simulations that this family of orbits can be used for solar sail formation flying. Furthermore, it is illustrated numerically that Solar Sails can provide stable formation keeping platforms that are robust to injection errors. In addition practical trajectories that pass close to the Earth and wind onto these periodic orbits above the ecliptic are identified

    Development, fabrication and test of a high purity silica heat shield

    Get PDF
    A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance

    VLA 8.4-GHz monitoring observations of the CLASS gravitational lens B1933+503

    Get PDF
    The complex ten-component gravitational lens system B1933+503 has been monitored with the VLA during the period February to June 1998 with a view to measuring the time delay between the four compact components and hence to determine the Hubble parameter. Here we present the results of an `A' configuration 8.4-GHz monitoring campaign which consists of 37 epochs with an average spacing of 2.8 days. The data have yielded light curves for the four flat-spectrum radio components (components 1, 3, 4 and 6). We observe only small flux density changes in the four flat-spectrum components which we do not believe are predominantly intrinsic to the source. Therefore the variations do not allow us to determine the independent time delays in this system. However, the data do allow us to accurately determine the flux density ratios between the four flat-spectrum components. These will prove important as modelling constraints and could prove crucial in future monitoring observations should these data show only a monotonic increase or decrease in the flux densities of the flat-spectrum components.Comment: Accepted for publication in MNRAS. 5 pages, 2 included PostScript figure

    Time-delayed feedback control in astrodynamics

    Get PDF
    In this paper we present time-delayed feedback control (TDFC) for the purpose of autonomously driving trajectories of nonlinear systems into periodic orbits. As the generation of periodic orbits is a major component of many problems in astodynamics we propose this method as a useful tool in such applications. To motivate the use of this method we apply it to a number of well known problems in the astrodynamics literature. Firstly, TDFC is applied to control in the chaotic attitude motion of an asymmetric satellite in an elliptical orbit. Secondly, we apply TDFC to the problem of maintaining a spacecraft in a periodic orbit about a body with large ellipticity (such as an asteroid) and finally, we apply TDFC to eliminate the drift between two satellites in low Earth orbits to ensure their relative motion is bounded

    Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    Get PDF
    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system

    Some Exact Results on the Potts Model Partition Function in a Magnetic Field

    Full text link
    We consider the Potts model in a magnetic field on an arbitrary graph GG. Using a formula of F. Y. Wu for the partition function ZZ of this model as a sum over spanning subgraphs of GG, we prove some properties of ZZ concerning factorization, monotonicity, and zeros. A generalization of the Tutte polynomial is presented that corresponds to this partition function. In this context we formulate and discuss two weighted graph-coloring problems. We also give a general structural result for ZZ for cyclic strip graphs.Comment: 5 pages, late

    Optimal path planning for nonholonomic robotics systems via parametric optimisation

    Get PDF
    Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping

    Polarization observations of nine southern millisecond pulsars

    Full text link
    Mean pulse profiles and polarization properties are presented for nine southern pulsars. The observations were made using the Parkes radio telescope at frequencies near 1330 MHz; three of the nine pulsars were also observed at 660 MHz. A very high degree of circular polarization was observed in PSR J1603-7202. Complex position angle variations which are not well described by the rotating-vector model were observed in PSRs J2124-3358 and J2145-0750, both of which have very wide profiles. Rotation measures were obtained for all nine pulsars, with two implying relatively strong interstellar magnetic fields.Comment: 24 pages, 11 figs, accepted by Ap

    Exact T=0 Partition Functions for Potts Antiferromagnets on Sections of the Simple Cubic Lattice

    Full text link
    We present exact solutions for the zero-temperature partition function of the qq-state Potts antiferromagnet (equivalently, the chromatic polynomial PP) on tube sections of the simple cubic lattice of fixed transverse size Lx×LyL_x \times L_y and arbitrarily great length LzL_z, for sizes Lx×Ly=2×3L_x \times L_y = 2 \times 3 and 2×42 \times 4 and boundary conditions (a) (FBCx,FBCy,FBCz)(FBC_x,FBC_y,FBC_z) and (b) (PBCx,FBCy,FBCz)(PBC_x,FBC_y,FBC_z), where FBCFBC (PBCPBC) denote free (periodic) boundary conditions. In the limit of infinite-length, Lz→∞L_z \to \infty, we calculate the resultant ground state degeneracy per site WW (= exponent of the ground-state entropy). Generalizing qq from Z+{\mathbb Z}_+ to C{\mathbb C}, we determine the analytic structure of WW and the related singular locus B{\cal B} which is the continuous accumulation set of zeros of the chromatic polynomial. For the Lz→∞L_z \to \infty limit of a given family of lattice sections, WW is analytic for real qq down to a value qcq_c. We determine the values of qcq_c for the lattice sections considered and address the question of the value of qcq_c for a dd-dimensional Cartesian lattice. Analogous results are presented for a tube of arbitrarily great length whose transverse cross section is formed from the complete bipartite graph Km,mK_{m,m}.Comment: 28 pages, latex, six postscript figures, two Mathematica file

    Ground State Entropy of Potts Antiferromagnets: Bounds, Series, and Monte Carlo Measurements

    Full text link
    We report several results concerning W(Λ,q)=exp⁡(S0/kB)W(\Lambda,q)=\exp(S_0/k_B), the exponent of the ground state entropy of the Potts antiferromagnet on a lattice Λ\Lambda. First, we improve our previous rigorous lower bound on W(hc,q)W(hc,q) for the honeycomb (hc) lattice and find that it is extremely accurate; it agrees to the first eleven terms with the large-qq series for W(hc,q)W(hc,q). Second, we investigate the heteropolygonal Archimedean 4⋅824 \cdot 8^2 lattice, derive a rigorous lower bound, on W(4⋅82,q)W(4 \cdot 8^2,q), and calculate the large-qq series for this function to O(y12)O(y^{12}) where y=1/(q−1)y=1/(q-1). Remarkably, these agree exactly to all thirteen terms calculated. We also report Monte Carlo measurements, and find that these are very close to our lower bound and series. Third, we study the effect of non-nearest-neighbor couplings, focusing on the square lattice with next-nearest-neighbor bonds.Comment: 13 pages, Latex, to appear in Phys. Rev.
    • 

    corecore