155 research outputs found

    Bonabeau model on a fully connected graph

    Full text link
    Numerical simulations are reported on the Bonabeau model on a fully connected graph, where spatial degrees of freedom are absent. The control parameter is the memory factor f. The phase transition is observed at the dispersion of the agents power h_i. The critical value f_C shows a hysteretic behavior with respect to the initial distribution of h_i. f_C decreases with the system size; this decrease can be compensated by a greater number of fights between a global reduction of the distribution width of h_i. The latter step is equivalent to a partial forgetting.Comment: 4 pages, 5 figures in 9 eps files, RevTeX4, presented at NEXT-SigmaPhi Conference, to appear in EPJ-

    Dynamics of Multi-Player Games

    Get PDF
    We analyze the dynamics of competitions with a large number of players. In our model, n players compete against each other and the winner is decided based on the standings: in each competition, the mth ranked player wins. We solve for the long time limit of the distribution of the number of wins for all n and m and find three different scenarios. When the best player wins, the standings are most competitive as there is one-tier with a clear differentiation between strong and weak players. When an intermediate player wins, the standings are two-tier with equally-strong players in the top tier and clearly-separated players in the lower tier. When the worst player wins, the standings are least competitive as there is one tier in which all of the players are equal. This behavior is understood via scaling analysis of the nonlinear evolution equations.Comment: 8 pages, 8 figure

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    A global view of aspen : Conservation science for widespread keystone systems

    Get PDF
    Across the northern hemisphere, six species of aspen (Populus spp.) play a disproportionately important role in promoting biodiversity, sequestering carbon, limiting forest disturbances, and providing other ecosystem services. These species are illustrative of efforts to move beyond single-species conservation because they facilitate hundreds of plants and animals worldwide. This review is intended to place aspen in a global conservation context by focusing on the many scientific advances taking place in such biologically diverse systems. In this manner, aspen may serve as a model for other widespread keystone systems where science-based practice may have world implications for biodiversity conservation. In many regions, aspen can maintain canopy dominance for decades to centuries as the sole major broadleaf trees in forested landscapes otherwise dominated by conifers. Aspen ecosystems are valued for many reasons, but here we highlight their potential as key contributors to regional and global biodiversity. We present global trends in research priorities, strengths, and weaknesses based on, 1) a qualitative survey, 2) a systematic literature analysis, and 3) regional syntheses of leading research topics. These regional syntheses explore important aspen uses, threats, and research priorities with the ultimate intent of research sharing focused on sound conservation practice. In all regions, we found that aspen enhance biodiversity, facilitate rapid (re)colonization in natural and damaged settings (e.g., abandoned mines), and provide adaptability in changing environments. Common threats to aspen ecosystems in many, but not all, regions include effects of herbivory, land clearing, logging practices favoring conifer species, and projected climate warming. We also highlight regional research gaps that emerged from the three survey approaches above. We believe multi-scale research is needed that examines disturbance processes in the context of dynamic climates where ecological, physiological, and genetic variability will ultimately determine widespread aspen sustainability. Based on this global review of aspen research, we argue for the advancement of the “mega-conservation” strategy, centered on the idea of sustaining a set of common keystone communities (aspen) that support wide arrays of obligate species. This approach contrasts with conventional preservation which focuses limited resources on individual species residing in narrow niches.Peer reviewe

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Truck Characteristics for Use in Highway Design and Operation. Volume I: Research Report

    Get PDF
    DTFH61-87-C-00088Highway geometric design and traffic operations are based in part on consideration of vehicle characteristics. However, many of the current highway design and operational criteria are based on passenger car characteristics, even though truck characteristics may be more critical. This report reviews existing data for the truck characteristics that need to be considered in highway design, including truck dimensions, braking distance, driver eye height, acceleration capabilities, speed-maintenance capabilities on grades, turning radius and offtracking characteristics, suspension characteristics, and rollover threshold. The report also includes these truck characteristics. The highway design and operational criteria evaluated include sight distances, vertical curve length, intersection design, critical length of grade, lane width, horizontal curve design, vehicle change intervals at traffic signals, sign placement, and highway capacity. An assessment has been made of the need to change the current highway design and operational criteria to accommodate trucks. The cost effectiveness of proposed changes in design and operational criteria has been evaluated. This volume, Volume I, of the report presents the main findings of the study including recommended changes in highway geometric design and operational criteria to accommodate trucks. Volume II of the report contains appendixes documenting the detailed data collection and analysis activities

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods
    corecore