52 research outputs found

    A quasilinear differential inclusion for viscous and rate-independent damage systems in non-smooth domains

    Get PDF
    This paper focuses on (incomplete) rate-independent damage in elastic bodies. Since the driving energy is nonconvex, solutions may have jumps as a function of time, and in this situation it is known that the classical concept of energetic solutions for rate-independent systems may fail to accurately describe the behavior of the system at jumps. Therefore we resort to the (by now well-established) "vanishing-viscosity" approach to rate-independent processes, and approximate the model by its viscous regularization. In fact, the analysis of the latter PDE system presents remarkable difficulties, due to its highly nonlinear character. We tackle it by combining a variational approach to a class of abstract doubly nonlinear evolution equations, with careful regularity estimates tailored to this specific system, relying on a q-Laplacian type gradient regularization of the damage variable. Hence for the viscous problem we conclude the existence of weak solutions, satisfying a suitable energy-dissipation inequality that is the starting point for the vanishing-viscosity analysis. The latter leads to the notion of (weak) parameterized solution to our rate-independent system, which encompasses the influence of viscosity in the description of the jump regime

    A vanishing viscosity approach to a rate-independent damage model

    Get PDF
    We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jump

    Quasistatic crack growth based on viscous approximation: a model with branching and kinking.

    Get PDF
    Employing the technique of vanishing viscosity and time rescaling, we show the existence of quasistatic evolutions of cracks in brittle materials in the setting of antiplane shear. The crack path is not prescribed a priori and is chosen in an admissible class of piecewise regular sets that allows for branching and kinking

    Congested traffic equilibria and degenerate anisotropic PDEs

    No full text
    Congested traffic problems on very dense networks lead, at the limit, to minimization problems posed on measures on curves as shown in Baillon and Carlier (Netw. Heterogenous Media 7: 219--241, 2012). Here, we go one step further by showing that these problems can be reformulated in terms of the minimization of an integral functional over a set of vector fields with prescribed divergence. We prove a Sobolev regularity result for their minimizers despite the fact that the Euler-Lagrange equation of the dual is highly degenerate and anisotropic. This somehow extends the analysis of Brasco et al. (J. Math. Pures Appl. 93: 652--671, 2010) to the anisotropic case

    Crack growth in polyconvex materials

    No full text
    We discuss a model for crack propagation in an elastic body, where the crack path is described a priori. In particular, we develop in the framework of finite-strain elasticity a rate-independent model for crack evolution which is based on the Griffith fracture criterion. Due to the nonuniqueness of minimizing deformations, the energy-release rate is no longer continuous with respect to time and the position of the crack tip. Thus, the model is formulated in terms of the Clarke differential of the energy, generalizing the classical crack evolution models for elasticity with strictly convex energies. We prove the existence of solutions for our model and also the existence of special solutions, where only certain extremal points of the Clarke differential are allowed
    • …
    corecore