14 research outputs found

    Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour

    Get PDF
    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad Autónoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    Get PDF
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    No full text
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    Get PDF
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely

    Around-the-clock observations of the Q0957+561A,B gravitationally lensed quasar. II. Results for the second observing season

    No full text
    We report on an observing campaign in 2001 March to monitor the brightness of the later arriving Q0957+561B image in order to compare with the previously published brightness observations of the (first-arriving) A image. The 12 participating observatories provided 3543 image frames, which we have analyzed for brightness fluctuations. From our classical methods for time-delay determination, we find a 417.09 ± 0.07 day time delay, which should be free of effects due to incomplete sampling. During the campaign period, the quasar brightness was relatively constant and only small fluctuations were found; we compare the structure function for the new data with structure function estimates for the 1995-1996 epoch and show that the structure function during our observing interval is unusually depressed. We also examine the data for any evidence of correlated fluctuations at zero lag. We discuss the limits of our ability to measure the cosmological time delay if the quasar's emitting surface is time resolved, as seems likely
    corecore