306 research outputs found

    First report of Champsodon capensis Regan, 1908 (Champsodontidae) from East coast of India

    Get PDF
    The gaper Champsodon capensis Regan, 1908 is reported for the first time from the east coast of India on the basis of 3 specimens (55 – 72 mm standard length) collected from Deshpran fishing harbor, West Bengal. Identification of the species is confirmed by ventral scale patterns on chin, breast, and abdomen. Earlier, this species was reported only from Andaman-Nicobar waters of India and the present finding report further range extension of the species to the northern part of the Bay of Bengal. This paper provides a detailed description of the species along with the comparison with other Champsodon species

    Fixed points of multivalued mappings in metric spaces

    Get PDF
    Admissibility of mappings are introduced to create conditions to minimally restrict various contractive conditions on pairs of points from a metric space in order to ensure fixed point property of the respective contractions. In the present work we define new admissibility conditions and control functions to obtain certain multivalued fixed point theorems. The corresponding single valued case is discussed. We define four weak contraction mappings of which two are multivalued and two are single valued. The results are without any assumption of continuity. There is an illustrative example

    Thermodynamics of cosmological horizons in f(T)f(T) gravity

    Full text link
    We explore thermodynamics of the apparent horizon in f(T)f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T)f(T) as for f(R)f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature of the outside and inside the apparent horizon.Comment: 18 pages, no figure, version accepted for publication in JCA

    Molecular association of glucose-6- phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    Get PDF
    Background: For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG).Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods: GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result: Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG,association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion: PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG

    Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis

    Get PDF
    Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host’s immune response which could be developed as an inexpensive and nontoxic therapeutics either alone or in combination

    Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension

    Get PDF
    BACKGROUND: Chronic hypoxia influences gene expression in the lung resulting in pulmonary hypertension and vascular remodelling. For specific investigation of the vascular compartment, laser-microdissection of intrapulmonary arteries was combined with array profiling. METHODS AND RESULTS: Analysis was performed on mice subjected to 1, 7 and 21 days of hypoxia (FiO(2 )= 0.1) using nylon filters (1176 spots). Changes in the expression of 29, 38, and 42 genes were observed at day 1, 7, and 21, respectively. Genes were grouped into 5 different classes based on their time course of response. Gene regulation obtained by array analysis was confirmed by real-time PCR. Additionally, the expression of the growth mediators PDGF-B, TGF-β, TSP-1, SRF, FGF-2, TIE-2 receptor, and VEGF-R1 were determined by real-time PCR. At day 1, transcription modulators and ion-related proteins were predominantly regulated. However, at day 7 and 21 differential expression of matrix producing and degrading genes was observed, indicating ongoing structural alterations. Among the 21 genes upregulated at day 1, 15 genes were identified carrying potential hypoxia response elements (HREs) for hypoxia-induced transcription factors. Three differentially expressed genes (S100A4, CD36 and FKBP1a) were examined by immunohistochemistry confirming the regulation on protein level. While FKBP1a was restricted to the vessel adventitia, S100A4 and CD36 were localised in the vascular tunica media. CONCLUSION: Laser-microdissection and array profiling has revealed several new genes involved in lung vascular remodelling in response to hypoxia. Immunohistochemistry confirmed regulation of three proteins and specified their localisation in vascular smooth muscle cells and fibroblasts indicating involvement of different cells types in the remodelling process. The approach allows deeper insight into hypoxic regulatory pathways specifically in the vascular compartment of this complex organ

    Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action

    Get PDF
    Sialic acids are a family of related sugars that play essential roles in many biological events intimately linked to cellular recognition in both health and disease. Sialidases are therefore orchestrators of cellular biology and important therapeutic targets for viral infection. Here, we sought to define if uncharacterized sialidases would provide distinct paradigms in sialic acid biochemistry. We show that a recently discovered sialidase family, whose first member EnvSia156 was isolated from hot spring metagenomes, defines an unusual structural fold and active centre constellation, not previously described in sialidases. Consistent with an inverting mechanism, EnvSia156 reveals a His/Asp active center in which the His acts as a Bronsted acid and Asp as a Bronsted base in a single-displacement mechanism. A pre-dominantly hydrophobic aglycone site facilitates accommodation of a variety of 2-linked sialosides; a versatility that offers the potential for glycan hydrolysis across a range of biological and technological platforms

    Developments in the Photonic Theory of Fluorescence

    Get PDF
    Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices

    Glycosylation of Erythrocyte Spectrin and Its Modification in Visceral Leishmaniasis

    Get PDF
    Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBCVL). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and β-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrinVL) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and β-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrinN) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrinN. Although the presence of both N- and O-glycosylations was found both in spectrinN and spectrinVL, enhanced sialylation was predominantly induced in spectrinVL. Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and β-spectrinVL confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrinVL showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrinN suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBCVL. The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrinVL as evidenced by the presence of an additional 60 kDa fragment, absent in spectrinN which possibly affects the biology of RBCVL linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients
    • …
    corecore