1,713 research outputs found

    Effects of Meditation on Heart Rate and Blood Pressure: A Mindfulness-based Study

    Get PDF
    Please download pdf version here

    Investigation of the hydrodynamic properties of a new MRI-resistant programmable hydrocephalus shunt.

    Get PDF
    BACKGROUND: The Polaris valve is a newly released hydrocephalus shunt that is designed to drain cerebrospinal fluid (CSF) from the brain ventricles or lumbar CSF space. The aim of this study was to bench test the properties of the Polaris shunt, independently of the manufacturer. METHODS: The Polaris Valve is a ball-on-spring valve, which can be adjusted magnetically in vivo. A special mechanism is incorporated to prevent accidental re-adjustment by an external magnetic field. The performance and hydrodynamic properties of the valve were evaluated in the UK Shunt Evaluation Laboratory, Cambridge, UK. RESULTS: The three shunts tested showed good mechanical durability over the 3-month period of testing, and a stable hydrodynamic performance over 45 days. The pressure-flow performance curves, operating, opening and closing pressures were stable. The drainage rate of the shunt increased when a negative outlet pressure (siphoning) was applied. The hydrodynamic parameters fell within the limits specified by the manufacturer and changed according to the five programmed performance levels. Hydrodynamic resistance was dependant on operating pressure, changing from low values of 1.6 mmHg/ml/min at the lowest level to 11.2 mmHg/ml/min at the highest performance level. External programming proved to be easy and reliable. Even very strong magnetic fields (3 Tesla) were not able to change the programming of the valve. However, distortion of magnetic resonance images was present. CONCLUSION: The Polaris Valve is a reliable, adjustable valve. Unlike other adjustable valves (except the Miethke ProGAV valve), the Polaris cannot be accidentally re-adjusted by an external magnetic field.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Matrix Metalloproteinase Expression in Contusional Traumatic Brain Injury: A Paired Microdialysis Study.

    Get PDF
    Matrix metalloproteinases (MMPs) are extracellular enzymes that have been implicated in the pathophysiology of blood-brain barrier (BBB) breakdown, contusion expansion, and vasogenic edema after traumatic brain injury (TBI). Specifically, in focal injury models, increased MMP-9 expression has been observed in pericontusional brain, and MMP-9 inhibitors reduce brain swelling and final lesion volume. The aim of this study was to examine whether there is a similarly localized increase of MMP concentrations in patients with contusional TBI. Paired microdialysis catheters were inserted into 12 patients with contusional TBI (with or without associated mass lesion) targeting pericontusional and radiologically normal brain defined on admission computed tomography scan. Microdialysate was pooled every 8 h and analyzed for MMP-1, -2, -7, -9, and -10 using a multiplex immunoassay. Concentrations of MMP-1, -2, and -10 were similar at both monitoring sites and did not show discernible temporal trends. Overall, there was a gradual increase in MMP-7 concentrations in both normal and injured brain over the monitoring period, although this was not consistent in every patient. MMP-9 concentrations were elevated in pericontusional, compared to normal, brain, with the maximal difference at the earliest monitoring times (i.e., <24 h postinjury). Repeated-measures analysis of variance showed that MMP-9 concentrations were significantly higher in pericontusional brain (p=0.03) and within the first 72 h of injury, compared with later in the monitoring period (p=0.04). No significant differences were found for the other MMPs assayed. MMP-9 concentrations are increased in pericontusional brain early post-TBI and may represent a potential therapeutic target to reduce hemorrhagic progression and vasogenic edema.M.R.G. was supported by a National Institute for Health Research (NIHR) Academic Clinical Fellowship, a Royal College of Surgeons/Philip King Research Fellowship, and a Beverley and Raymond Sackler Fellowship. A.H. was supported by a joint Medical Research Council/ Royal College of Surgeons of England Clinical Research Training Fellowship. K.L.H.C. is supported by the NIHR Biomedical Research Center, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme). J.D.P. is supported by the Traumatic Brain Injury NIHR Health Technology Cooperative. D.K.M. is supported by an NIHR Senior Investigator Award. P.J.A.H. is supported by the Cambridge NIHR BRC and an NIHR Research Professorship.This is the final published version. It was first made available by Mary Ann Liebert at http://dx.doi.org/10.1089/neu.2014.376

    What comes first? The dynamics of cerebral oxygenation and blood flow in response to changes in arterial pressure and intracranial pressure after head injury

    Get PDF
    Background Brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) are novel methods to evaluate cerebral oxygenation. We studied the response patterns of PbtO2, NIRS, and cerebral blood flow velocity (CBFV) to changes in arterial pressure (AP) and intracranial pressure (ICP). Methods Digital recordings of multimodal brain monitoring from 42 head-injured patients were retrospectively analysed. Response latencies and patterns of PbtO2, NIRS-derived parameters [tissue oxygenation index (TOI) and total haemoglobin index (THI)], and CBFV reactions to fluctuations of AP and ICP were studied. Results One hundred and twenty-one events were identified. In reaction to alterations of AP, ICP reacted first [4.3 s; inter-quartile range (IQR) −4.9 to 22.0 s, followed by NIRS-derived parameters and CBFV (10.9 s; IQR: −5.9 to 39.6 s, 12.1 s; IQR: −3.0 to 49.1 s, 14.7 s; IQR: −8.8 to 52.3 s for THI, CBFV, and TOI, respectively), with PbtO2 reacting last (39.6 s; IQR: 16.4 to 66.0 s). The differences in reaction time between NIRS parameters and PbtO2 were significant (P<0.001). Similarly when reactions to ICP changes were analysed, NIRS parameters preceded PbtO2 (7.1 s; IQR: −8.8 to 195.0 s, 18.1 s; IQR: −20.6 to 80.7 s, 22.9 s; IQR: 11.0 to 53.0 s for THI, TOI, and PbtO2, respectively). Two main patterns of responses to AP changes were identified. With preserved cerebrovascular reactivity, TOI and PbtO2 followed the direction of AP. With impaired cerebrovascular reactivity, TOI and PbtO2 decreased while AP and ICP increased. In 77% of events, the direction of TOI changes was concordant with PbtO2. Conclusions NIRS and transcranial Doppler signals reacted first to AP and ICP changes. The reaction of PbtO2 is delayed. The results imply that the analysed modalities monitor different stages of cerebral oxygenatio

    Longitudinal assessments highlight long-term behavioural recovery in disorders of consciousness.

    Get PDF
    Accurate diagnosis and prognosis of disorders of consciousness is complicated by the variability amongst patients' trajectories. However, the majority of research and scientific knowledge in this field is based on cross-sectional studies. The translational gap in applying this knowledge to inform clinical management can only be bridged by research that systematically examines follow-up. In this study, we present findings from a novel longitudinal study of the long-term recovery trajectory of 39 patients, repeatedly assessed using the Coma Recovery Scale-Revised once every 3 months for 2 years, generating 185 assessments. Despite the expected inter-patient variability, there was a statistically significant improvement in behaviour over time. Further, improvements began approximately 22 months after injury. Individual variation in the trajectory of recovery was influenced by initial diagnosis. Patients with an initial diagnosis of unresponsive wakefulness state, who progressed to the minimally conscious state, did so at a median of 485 days following onset-later than 12-month period after which current guidelines propose permanence. Although current guidelines are based on the expectation that patients with traumatic brain injury show potential for recovery over longer periods than those with non-traumatic injury, we did not observe any differences between trajectories in these two subgroups. However, age was a significant predictor, with younger patients showing more promising recovery. Also, progressive increases in arousal contributed exponentially to improvements in behavioural awareness, especially in minimally conscious patients. These findings highlight the importance of indexing arousal when measuring awareness, and the potential for interventions to regulate arousal to aid long-term behavioural recovery in disorders of consciousness

    Bedside EEG predicts longitudinal behavioural changes in disorders of consciousness.

    Get PDF
    Providing an accurate prognosis for prolonged disorder of consciousness (pDOC) patients remains a clinical challenge. Large cross-sectional studies have demonstrated the diagnostic and prognostic value of functional brain networks measured using high-density electroencephalography (hdEEG). Nonetheless, the prognostic value of these neural measures has yet to be assessed by longitudinal follow-up. We address this gap by assessing the utility of hdEEG to prognosticate long-term behavioural outcome, employing longitudinal data collected from a cohort of patients assessed systematically with resting hdEEG and the Coma Recovery Scale-Revised (CRS-R) at the bedside over a period of two years. We used canonical correlation analysis to relate clinical (including CRS-R scores combined with demographic variables) and hdEEG variables to each other. This analysis revealed that the patient's age, and the hdEEG theta band power and alpha band connectivity, contributed most significantly to the relationship between hdEEG and clinical variables. Further, we found that hdEEG measures recorded at the time of assessment augmented clinical measures in predicting CRS-R scores at the next assessment. Moreover, the rate of hdEEG change not only predicted later changes in CRS-R scores, but also outperformed clinical measures in terms of prognostic power. Together, these findings suggest that improvements in functional brain networks precede changes in behavioural awareness in pDOC. We demonstrate here that bedside hdEEG assessments conducted at specialist nursing homes are feasible, have clinical utility, and can complement clinical knowledge and systematic behavioural assessments to inform prognosis and care
    • …
    corecore