23 research outputs found

    Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction

    Get PDF
    Errors in gas concentration measurements by infrared gas analysers can occur during eddy-covariance campaigns, associated with actual or apparent instrumental drifts or biases due to thermal expansion, dirt contamination, aging of components or errors in field operations. If occurring on long timescales (hours to days), these errors are normally ignored during flux computation, under the assumption that errors in mean gas concentrations do not affect the estimation of turbulent fluctuations and, hence, of covariances. By analysing instrument theory of operation, and using numerical simulations and field data, we show that this is not the case for instruments with curvilinear calibrations; we further show that if not appropriately accounted for, concentration biases can lead to roughly proportional systematic flux errors, where the fractional errors in fluxes are about 30–40% the fractional errors in concentrations. We quantify these errors and characterize their dependency on main determinants. We then propose a correction procedure that largely – potentially completely – eliminates these errors. The correction, to be applied during flux computation, is based on knowledge of instrument calibration curves and on field or laboratory calibration data. Finally, we demonstrate the occurrence of such errors and validate the correction procedure by means of a field experiment, and accordingly provide recommendations for in situ operations

    CO 2

    No full text
    International audienc

    Environment and Hybrid Influences on Food-Grade Sorghum Grain Yield and Hardness

    Get PDF
    Few studies have examined grain quality of food-grade sorghum hybrids. The objective of this study was to determine the effects of environment and hybrid on grain quality of commercially available food-grade sorghums. A randomized complete block experiment with three replications was planted in 12 environments, which included the 2004 and 2005 growing seasons and irrigated and dryland water regimes in eastern, central, and west central Nebraska and a dryland low-N environment in eastern Nebraska. Environment accounted for 5 to 140 times greater variation in measured parameters than hybrid, and the hybrid × environment interaction accounted for less than 2% of the total variation. Grain yield and kernel mass varied, with low yields of 1.4 Mg ha−1 and kernels weighing 9.5 g 1000 kernels−1 in the low-N 2004 environment, high grain yields of 10.5 Mg ha−1 under irrigated conditions in central Nebraska in 2005, and kernels weighing 27.8 g 1000 kernels−1 in the eastern Nebraska dryland 2005 environment. Harder grain was produced in 2005 than in 2004, with the west central and central 2005 environments having the lowest tangential abrasive dehulling device (TADD) removals of 14%. Non-food-grade hybrids produced higher grain yields and kernel mass than food-grade hybrids. Grain hardness was greater for nonfood- grade and medium maturity hybrids when environmental means were lower (i.e., softer) but showed little or no difference in hardness when environmental means were high. Nebraska production environments have the capability to produce high quality food-grade sorghums for specific food uses to benefit both the producer and the food processor
    corecore