210 research outputs found

    Patients with Discordant Responses to Antiretroviral Therapy Have Impaired Killing of HIV-Infected T Cells

    Get PDF
    In medicine, understanding the pathophysiologic basis of exceptional circumstances has led to an enhanced understanding of biology. We have studied the circumstance of HIV-infected patients in whom antiretroviral therapy results in immunologic benefit, despite virologic failure. In such patients, two protease mutations, I54V and V82A, occur more frequently. Expressing HIV protease containing these mutations resulted in less cell death, caspase activation, and nuclear fragmentation than wild type (WT) HIV protease or HIV protease containing other mutations. The impaired induction of cell death was also associated with impaired cleavage of procaspase 8, a requisite event for HIV protease mediated cell death. Primary CD4 T cells expressing I54V or V82A protease underwent less cell death than with WT or other mutant proteases. Human T cells infected with HIV containing these mutations underwent less cell death and less Casp8p41 production than WT or HIV containing other protease mutations, despite similar degrees of viral replication. The reductions in cell death occurred both within infected cells, as well as in uninfected bystander cells. These data indicate that single point mutations within HIV protease which are selected in vivo can significantly impact the ability of HIV to kill CD4 T cells, while not impacting viral replication. Therefore, HIV protease regulates both HIV replication as well as HIV induced T cell depletion, the hallmark of HIV pathogenesis

    A facile quantitative assay for viral particle genesis reveals cooperativity in virion assembly and saturation of an antiviral protein

    Get PDF
    Conventional assays of viral particle assembly and release are time consuming and laborious. We have developed an enzymatic virus-like particle (VLP) genesis assay that rapid and quantitative and is also versatile and applicable to diverse viruses including HIV-1 and Ebola virus. Using this assay, which has a dynamic range of several orders of magnitude, we show that the efficiency of VLP assembly and release, i.e., the fraction of the expressed protein that is assembled into extracellular particles, is dependent on the absolute level of expression of either HIV-1 Gag or Ebola virus VP40. We also demonstrate that the activity of the antiviral factor tetherin is dependent on the level of HIV-1 Gag expression and the numbers of VLPs generated, and appears to become saturated as these parameters are increased

    Haemophagocytic Syndrome in a 19-Year-Old Male with Plasmodium falciparum Malaria

    Get PDF
    Objectives: Infectious agents triggering haemophagocytic lymphohistiocytosis (HLH) primarily involve the herpes virus group. We report a case of HLH precipitated by Plasmodium falciparum. Materials and methods: Clinical and laboratory findings in a patient presenting with fever were collected. After confirmation of acute malaria, anti-malarial treatment was administered. Results: Despite initial favourable evolution, the patient developed fever again together with a worsening of the haematological parameters and increased ferritin levels. A bone marrow biopsy confirmed the diagnosis of HLH. Conclusion: This case illustrates that HLH should be considered in the differential diagnosis of acute malaria in patients with persisting fever and pancytopenia

    Renal Normothermic Machine Perfusion:The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool

    Get PDF
    The increased utilization of high-risk renal grafts for transplantation requires optimization of pretransplant organ assessment strategies. Current decision-making methods to accept an organ for transplantation lack overall predictive power and always contain an element of subjectivity. Normothermic machine perfusion (NMP) creates near-physiological conditions, which might facilitate a more objective assessment of organ quality prior to transplantation. NMP is rapidly gaining popularity, with various transplant centers developing their own NMP protocols and renal viability criteria. However, to date, no validated sets of on-pump viability markers exist nor are there unified NMP protocols. This review provides a critical overview of the fundamentals of current renal NMP protocols and proposes a framework to approach further development of ex vivo organ evaluation. We also comment on the potential logistical implications of routine clinical use of NMP, which is a more complex procedure compared to static cold storage or even hypothermic machine perfusion. Supplemental Visual Abstract; http://links.lww.com/TP/C232

    Progress in human picornavirus research: New findings from the AIROPico consortium

    Get PDF
    Several research groups in Europe are active on different aspects of human picornavirus research. The AIROPico (Academia-Industry R&D Opportunities for Picornaviruses) consortium combined the disciplines of pathogenesis, diagnostics and therapy development in order to fill the gaps in our understanding of how picornaviruses cause human disease and how to combat them. AIROPico was the first EU consortium dedicated to human picornavirus research and development, and has largely accelerated and improved R&D on picornavirus biology, diagnostics and therapy. In this article, we present the progress on pathogenesis, diagnostics and treatment strategy developments for human picornaviruses resulting from the structured, translational research approach of the AIROPico consortium. We here summarize new insights in protection against infection by maternal or cross-protective antibodies, the visualisation of interactions between virus and neutralizing antibodies by cryoEM structural imaging, and the outcomes from a picornavirus-infected human 3D organoid. Progress in molecular detection and a fast typing assay for rhinovirus species are presented, as well as the identification of new compounds potentially interesting as therapeutic compounds.</p

    The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model

    Get PDF
    BACKGROUND: Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV-2. First efficacy data have been recently reported in COVID-19 patients. METHODS: We here report on the combined antiviral effect of both drugs in a SARS-CoV-2 Syrian hamster infection model. The infected hamsters were treated twice daily with the vehicle (the control group) or a suboptimal dose of each compound or a combination of both compounds. FINDINGS: When animals were treated with a combination of suboptimal doses of Molnupiravir and Favipiravir at the time of infection, a marked combined potency at endpoint is observed. Infectious virus titers in the lungs of animals treated with the combination are reduced by ∼5 log10 and infectious virus are no longer detected in the lungs of >60% of treated animals. When start of treatment was delayed with one day a reduction of titers in the lungs of 2.4 log10 was achieved. Moreover, treatment of infected animals nearly completely prevented transmission to co-housed untreated sentinels. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs of treated animals. In the combo-treated hamsters, an increased frequency of C-to-T mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. INTERPRETATION: Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir/Favipiravir in the treatment of COVID-19. FUNDING: stated in the acknowledgment

    ALIFE2 study : low-molecular-weight heparin for women with recurrent miscarriage and inherited thrombophilia : study protocol for a randomized controlled trial

    Get PDF
    Background A large number of studies have shown an association between inherited thrombophilia and recurrent miscarriage. It has been hypothesized that anticoagulant therapy might reduce the number of miscarriages and stillbirth in these women. In the absence of randomized controlled trials evaluating the efficacy of anticoagulant therapy in women with inherited thrombophilia and recurrent miscarriage, a randomized trial with adequate power that addresses this question is needed. The objective of the ALIFE2 study is therefore to evaluate the efficacy of low-molecular-weight heparin (LMWH) in women with inherited thrombophilia and recurrent miscarriage, with live birth as the primary outcome. Methods/Design Randomized study of LMWH plus standard pregnancy surveillance versus standard pregnancy surveillance alone. Study population: pregnant women of less than 7 weeks’ gestation, and confirmed inherited thrombophilia with a history of 2 or more miscarriages or intra-uterine fetal deaths, or both. Setting: multi-center study in centers from the Dutch Consortium of Fertility studies; centers outside the Netherlands are currently preparing to participate. Intervention: LMWH enoxaparin 40 mg subcutaneously once daily started prior to 7 weeks gestational age plus standard pregnancy surveillance or standard pregnancy surveillance alone. Main study parameters/endpoints: the primary efficacy outcome is live birth. Secondary efficacy outcomes include adverse pregnancy outcomes, such as miscarriage, pre-eclampsia, syndrome of hemolysis, elevated liver enzymes and low platelets (HELLP syndrome), fetal growth restriction, placental abruption, premature delivery and congenital malformations. Safety outcomes include bleeding episodes, thrombocytopenia and skin reactions. Discussion After an initial period of slow recruitment, the recruitment rate for the study has increased. Improved awareness of the study and acknowledgement of the need for evidence are thought to be contributing to the improved recruitment rates. We aim to increase the number of recruiting centers in order to increase enrollment into the ALIFE2 study. The study website can be accessed via www.ALIFE2study.org. Trial registration The ALIFE2 study was registered on 19 March 2012 under registration number NTR336

    Pharmacologic targeting of renal ischemia-reperfusion injury using a normothermic machine perfusion platform.

    Get PDF
    Normothermic machine perfusion (NMP) is an emerging modality for kidney preservation prior to transplantation. NMP may allow directed pharmacomodulation of renal ischemia-reperfusion injury (IRI) without the need for systemic donor/recipient therapies. Three proven anti-IRI agents not in widespread clinical use, CD47-blocking antibody (αCD47Ab), soluble complement receptor 1 (sCR1), and recombinant thrombomodulin (rTM), were compared in a murine model of kidney IRI. The most effective agent was then utilized in a custom NMP circuit for the treatment of isolated porcine kidneys, ascertaining the impact of the drug on perfusion and IRI-related parameters. αCD47Ab conferred the greatest protection against IRI in mice after 24 hours. αCD47Ab was therefore chosen as the candidate agent for addition to the NMP circuit. CD47 receptor binding was demonstrated by immunofluorescence. Renal perfusion/flow improved with CD47 blockade, with a corresponding reduction in oxidative stress and histologic damage compared to untreated NMP kidneys. Tubular and glomerular functional parameters were not significantly impacted by αCD47Ab treatment during NMP. In a murine renal IRI model, αCD47Ab was confirmed as a superior anti-IRI agent compared to therapies targeting other pathways. NMP enabled effective, direct delivery of this drug to porcine kidneys, although further efficacy needs to be proven in the transplantation setting

    A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions

    Get PDF
    Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches
    • …
    corecore