1,595 research outputs found

    Feeding Practices in South Dakota Cattle Feedlots

    Get PDF
    During March 1989, a mail survey of South Dakota cattle feedlot managers was undertaken. The purposes of the survey were to characterize the nature of the cattle feeding industry in South Dakota and to determine the relationships between (i) each of size-of-feedlot and geographic location within the state and (ii) management practices followed by cattle feeders. Direct relationships exist between size-of-feedlot and the following: (1) rate of feedlot utilization in each quarter of the year (P\u3c.10); (2) percentage grain relative to roughage in both growing and finishing diets (P\u3c.10); (3) percentage of feedlots feeding high moisture grain, cracked grain, and ground hay (P\u3c.01); (4) percentage of feedlots using rumen stimulants and growth implants (P\u3c.01); and (5) percentages of managers testing feeds for nutrient composition, using feed scales to control feeding rates, maintaining feed records for separate pens of cattle, and hiring consultants to formulate rations (P\u3c.01). On the other hand, inverse relationships exist between size-of-feedlot and the following: (6) days on feed for heifer calves, yearling steers, and yearling heifers (P\u3c.10); (7) slaughter weight of steers (Pc.10); (8) percentage of home-raised hay and dry grain (P\u3c.10); (9) percentage of feedlots feeding ground grain and unprocessed hay (P\u3c.01); and (10) percentage of feedlots not using feed additives (P\u3c.10). Average days on feed for steer and heifer calves are lower (P\u3c.05) in the West than in other areas of the state. More milo is fed in the West; more barley is fed in the North Central region; and less home-raised corn silage and haylage are fed in the West than in other regions (P\u3c.05)

    Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration

    Full text link
    The electronic structure of the hydrogen molecule in a magnetic field is investigated for parallel internuclear and magnetic field axes. The lowest states of the Π\Pi manifold are studied for spin singlet and triplet(Ms=−1)(M_s = -1) as well as gerade and ungerade parity for a broad range of field strengths 0≤B≤100a.u.0 \leq B \leq 100 a.u. For both states with gerade parity we observe a monotonous decrease in the dissociation energy with increasing field strength up to B=0.1a.u.B = 0.1 a.u. and metastable states with respect to the dissociation into two H atoms occur for a certain range of field strengths. For both states with ungerade parity we observe a strong increase in the dissociation energy with increasing field strength above some critical field strength BcB_c. As a major result we determine the transition field strengths for the crossings among the lowest 1Σg^1\Sigma_g, 3Σu^3\Sigma_u and 3Πu^3\Pi_u states. The global ground state for B≲0.18a.u.B \lesssim 0.18 a.u. is the strongly bound 1Σg^1\Sigma_g state. The crossings of the 1Σg^1\Sigma_g with the 3Σu^3\Sigma_u and 3Πu^3\Pi_u state occur at B≈0.18B \approx 0.18 and B≈0.39a.u.B \approx0.39 a.u., respectively. The transition between the 3Σu^3\Sigma_u and 3Πu^3\Pi_u state occurs at B≈12.3a.u.B \approx 12.3 a.u. Therefore, the global ground state of the hydrogen molecule for the parallel configuration is the unbound 3Σu^3\Sigma_u state for 0.18≲B≲12.3a.u.0.18 \lesssim B \lesssim 12.3 a.u. The ground state for B≳12.3a.u.B \gtrsim 12.3 a.u. is the strongly bound 3Πu^3\Pi_u state. This result is of great relevance to the chemistry in the atmospheres of magnetic white dwarfs and neutron stars.Comment: submitted to Physical Review

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    Helium in superstrong magnetic fields

    Get PDF
    We investigate the helium atom embedded in a superstrong magnetic field gamma=100-10000 au. All effects due to the finite nuclear mass for vanishing pseudomomentum are taken into account. The influence and the magnitude of the different finite mass effects are analyzed and discussed. Within our full configuration interaction approach calculations are performed for the magnetic quantum numbers M=0,-1,-2,-3, singlet and triplet states, as well as positive and negative z parities. Up to six excited states for each symmetry are studied. With increasing field strength the number of bound states decreases rapidly and we remain with a comparatively small number of bound states for gamma=10^4 au within the symmetries investigated here.Comment: 16 pages, including 14 eps figures, submitted to Phys. Rev.

    Improved asymmetry prediction for short interfering RNA s

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102096/1/febs12599.pd

    Alkali Metal Complexes of a Bis(diphenylphosphino)methane Functionalized Amidinate Ligand: Synthesis and Luminescence

    Get PDF
    A novel bis(diphenylphosphino)methane (DPPM) functionalized amidine ligand (DPPM−C(N-Dipp)2_{2}H) (Dipp=2,6-diisopropylphenyl) was synthesized. Subsequent deprotonation with suitable alkali metal bases resulted in the corresponding complexes [M{DPPM−C(N-Dipp)2_{2}}(Ln)] (M=Li, Na, K, Rb, Cs; L=thf, Et2_{2}O). The alkali metal complexes form monomeric species in the solid state, exhibiting intramolecular metal-π-interactions. In addition, a caesium derivative [Cs{PPh2_{2}CH2_{2}-C(N-Dipp)2_{2}}]6_{6} was obtained by cleavage of a diphenylphosphino moiety, forming an unusual six-membered ring structure in the solid state. All complexes were fully characterized by single crystal X-ray diffraction, NMR spectroscopy, IR spectroscopy as well as elemental analysis. Furthermore, the photoluminescent properties of the complexes were thoroughly investigated, revealing differences in emission with regards to the respective alkali metal. Interestingly, the hexanuclear [Cs{PPh2_{2}CH2_{2}-C(N-Dipp)2_{2}}]6_{6} metallocycle exhibits a blue emission in the solid state, which is significantly red-shifted at low temperatures. The bifunctional design of the ligand, featuring orthogonal donor atoms (N vs. P) and a high steric demand, is highly promising for the construction of advanced metal and main group complexes
    • …
    corecore