13,635 research outputs found

    Presence of 3d Quadrupole Moment in LaTiO3 Studied by 47,49Ti NMR

    Full text link
    Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/3(dxy+dyz+dzx)1/\sqrt{3}(d_{xy}+d_{yz}+d_{zx}) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.Comment: 4 pages, 3 fugures; to appear in Phys. Rev. Let

    Ion structure factors and electron transport in dense Coulomb plasmas

    Full text link
    The dynamical structure factor of a Coulomb crystal of ions is calculated at arbitrary temperature below the melting point taking into account multi-phonon processes in the harmonic approximation. In a strongly coupled Coulomb ion liquid, the static structure factor is split into two parts, a Bragg-diffraction-like one, describing incipient long-range order structures, and an inelastic part corresponding to thermal ion density fluctuations. It is assumed that the diffractionlike scattering does not lead to the electron relaxation in the liquid phase. This assumption, together with the inclusion of multi-phonon processes in the crystalline phase, eliminates large discontinuities of the transport coefficients (jumps of the thermal and electric conductivities, as well as shear viscosity, reported previously) at a melting point.Comment: 4 pages, 2 figures, REVTeX using epsf.sty. Phys. Rev. Lett., in pres

    Nucleon-Nucleon Scattering in a Strong External Magnetic Field and the Neutrino Emissivity

    Full text link
    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose we consider the one-pion-exchange approximation to find the NN cross-section in a background field as large as 1015G−1018G10^{15}\texttt{G}-10^{18}\texttt{G}. We show that the NN cross-section in neutron stars with temperatures in the range 0.1-5 \texttt{MeV} can be changed up to the one order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission the neutrino emissivity can be written in terms of the NN scattering amplitude therefore the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.Comment: 21 pages, 5 figures, to appear in PR

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Effect of the curvature and the {\beta} parameter on the nonlinear dynamics of a drift tearing magnetic island

    Get PDF
    We present numerical simulation studies of 2D reduced MHD equations investigating the impact of the electronic \beta parameter and of curvature effects on the nonlinear evolution of drift tearing islands. We observe a bifurcation phenomenon that leads to an amplification of the pressure energy, the generation of E \times B poloidal flow and a nonlinear diamagnetic drift that affects the rotation of the magnetic island. These dynamical modifications arise due to quasilinear effects that generate a zonal flow at the onset point of the bifurcation. Our simulations show that the transition point is influenced by the \beta parameter such that the pressure gradient through a curvature effect strongly stabilizes the transition. Regarding the modified rotation of the island, a model for the frequency is derived in order to study its origin and the effect of the \beta parameter. It appears that after the transition, an E \times B poloidal flow as well as a nonlinear diamagnetic drift are generated due to an amplification of the stresses by pressure effects

    Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4

    Full text link
    Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4 has been studied through charge transport measurements. The resistivity, the Seebeck coefficient, and the Hall coefficient are consistently explained in terms of a simple one-band picture, where a hole with a moderately enhanced mass is itinerant three-dimensionally. Contrary to the theoretical prediction [Phys. Rev. B62, 13426 (2000)], CaPd_3O_4 is unlikely to be an excitonic insulator, and holds a finite carrier concentration down to 4.2 K. Thus the metal-insulator transition in this system is basically driven by localization effects.Comment: RevTeX4 format, 4 pages, 5 eps figure

    Zebra finch cell lines from naturally occurring tumors

    Get PDF
    The zebra finch (Taeniopygia guttata) has been intensively studied in many research fields including neuroscience, behavioral neurobiology, and evolution of the genome. Although numerous molecular and genomic resources are available for this model species, immortalized cell lines have been lacking. We have established two zebra finch cell lines derived from spontaneous tumors. ZFTMA is a tetraploid female cell line and G266 as a diploid male cell line. These first zebra finch cell lines should facilitate development of research on this model species
    • …
    corecore