5,328 research outputs found

    Comment on "Measurement of time of arrival in quantum mechanics"

    Full text link
    The analysis of the model quantum clocks proposed by Aharonov et al. [Phys. Rev. A 57 (1998) 4130 - quant-ph/9709031] requires considering evanescent components, previously ignored. We also clarify the meaning of the operational time of arrival distribution which had been investigated.Comment: 3 inlined figures; comment on quant-ph/970903

    Moller operators and Lippmann-Schwinger equations for step-like potentials

    Get PDF
    The Moller operators and the asociated Lippman-Schwinger equations obtained from different partitionings of the Hamiltonian for a step-like potential barrier are worked out, compared and related.Comment: 15 pages, 1 inlined figure, iopart.cl

    The Gravitational Lens CFRS03.1077

    Get PDF
    An exquisite gravitational arc with a radius of 2.1" has been discovered around the z = 0.938 field elliptical galaxy CFRS03.1077 during HST observations of Canada-France Redshift Survey (CFRS) fields. Spectroscopic observations of the arc show that the redshift of the resolved lensed galaxy is z = 2.941. This gravitational lens-source system is well-fitted using the position angle and ellipticity derived from the visible matter distribution and an isothermal mass profile with a mass corresponding to sigma =387+-5 km/s. Surprisingly, given the evidence for passive evolution of elliptical galaxies, this is in good agreement with an estimate based on the fundamental plane for z = 0 ellipticals. This, perhaps, indicates that this galaxy has not shared in the significant evolution observed for average elliptical galaxies at z ~ 1. A second elliptical galaxy with similar luminosity from the CFRS survey, CFRS 14.1311 at z=0.807, is also a lens but in this case the lens model gives a much smaller mass-to-light ratio, i.e., it appears to confirm the expected evolution. This suggests that this pair of field elliptical galaxies may have very different evolutionary histories, a significant result if confirmed. Clearly, CFRS03.1077 demonstrates that these "Einstein rings" are powerful probes of high redshift galaxies.Comment: 11 pages, 5 figures, accepted by Ap.

    Hydrodynamic lift on bound vesicles

    Full text link
    Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.Comment: 9 pages, one figur

    IMAGES I. Strong evolution of galaxy kinematics since z=1

    Get PDF
    (abbreviated) We present the first results of the ESO large program, ``IMAGES'' which aims at obtaining robust measurements of the kinematics of distant galaxies using the multi-IFU mode of GIRAFFE on the VLT. 3D spectroscopy is essential to robustly measure the often distorted kinematics of distant galaxies (e.g., Flores et al. 2006). We derive the velocity fields and σ\sigma-maps of 36 galaxies at 0.4<z<0.75 from the kinematics of the [OII] emission line doublet, and generate a robust technique to identify the nature of the velocity fields based on the pixels of the highest signal-to-noise ratios (S/N). We have gathered a unique sample of 63 velocity fields of emission line galaxies (W0([OII]) > 15 A) at z=0.4-0.75, which are a representative subsample of the population of M_stellar>1.5x10^{10} M_sun emission line galaxies in this redshift range, and are largely unaffected by cosmic variance. Taking into account all galaxies -with or without emission lines- in that redshift range, we find that at least 41+/-7% of them have anomalous kinematics, i.e., they are not dynamically relaxed. This includes 26+/-7% of distant galaxies with complex kinematics, i.e., they are not simply pressure or rotationally supported. Our result implies that galaxy kinematics are among the most rapidly evolving properties, because locally, only a few percent of the galaxies in this mass range have complex kinematics.Comment: 17 pages, 6 figures, Accepted by A&

    Potential, core-level and d band shifts at transition metal surfaces

    Full text link
    We have extended the validity of the correlation between the surface 3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d transition metal series and to the neighboring elements Sr and Ag via accurate first-principles calculations. We find that the correlation is quasilinear and robust with respect to the differencies both between initial and final-state calculations of the SCLS's and two distinct measures of the SDBS's. We show that despite the complex spatial dependence of the surface potential shift (SPS) and the location of the 3d and 4d orbitals in different regions of space, the correlation exists because the sampling of the SPS by the 3d and 4d orbitals remains similar. We show further that the sign change of the SCLS's across the transition series does indeed arise from the d band-narrowing mechanism previously proposed. However, while in the heavier transition metals the predicted increase of d electrons in the surface layer relative to the bulk arises primarily from transfers from s and p states to d states within the surface layer, in the lighter transition metals the predicted decrease of surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.

    Using resource graphs to represent conceptual change

    Full text link
    We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of resources and coordination classes. It can represent mesoscopic scales that are neither knowledge-in-pieces or large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we introduce a new form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.Comment: 27 pages, 14 figures, no tables. Submitted for publication to the Physical Review Special Topics Physics Education Research on March 8, 200
    corecore