1,049 research outputs found
Time-dependent radiative transfer with PHOENIX
Aims. We present first results and tests of a time-dependent extension to the
general purpose model atmosphere code PHOENIX. We aim to produce light curves
and spectra of hydro models for all types of supernovae. Methods. We extend our
model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative
transfer in a special relativistic framework. A simple hydrodynamics solver was
implemented to keep track of the energy conservation of the atmosphere during
free expansion. Results. The correct operation of the new additions to PHOENIX
were verified in test calculations. Conclusions. We have shown the correct
operation of our extension to time-dependent radiative transfer and will be
able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure
A 3D radiative transfer framework IX. Time dependence
Context. Time-dependent, 3D radiation transfer calculations are important for
the modeling of a variety of objects, from supernovae and novae to simulations
of stellar variability and activity. Furthermore, time-dependent calculations
can be used to obtain a 3D radiative equilibrium model structure via relaxation
in time. Aims. We extend our 3D radiative transfer framework to include direct
time dependence of the radiation field; i.e., the
terms are fully considered in the solution of radiative transfer problems.
Methods. We build on the framework that we have described in previous papers in
this series and develop a subvoxel method for the
terms. Results. We test the implementation by comparing the 3D results to our
well tested 1D time dependent radiative transfer code in spherical symmetry. A
simple 3D test model is also presented. Conclusions. The 3D time dependent
radiative transfer method is now included in our 3D RT framework and in
PHOENIX/3D.Comment: A&A in press, 7 pages, 14 figure
Preliminary Spectral Analysis of SN 1994I
We present optical spectra of the Type Ic supernova 1994I in M51 and
preliminary non-LTE analysis of the spectra. Our models are not inconsistent
with the explosions of C+O cores of massive stars. While we find no direct
evidence for helium in the optical spectra, our models cannot rule out small
amounts of helium. More than 0.1~\msol\ of helium seems unlikely.Comment: LaTeX, MN style, psfig, and natbib substyles, 7 pages, 4 figures, to
appear in MNRAS. Postscript file available from
http://www.nhn.uoknor.edu/~baro
Gravitational microlensing as a test of stellar model atmospheres
We present calculations illustrating the potential of gravitational
microlensing to discriminate between classical models of stellar surface
brightness profiles and the recently computed ``Next Generation'' models of
Hauschildt et al. These spherically-symmetric models include a much improved
treatment of molecular lines in the outer atmospheres of cool giants -- stars
which are very typical sources in Galactic bulge microlensing events. We show
that the microlensing signatures of intensively monitored point and fold
caustic crossing events are readily able to distinguish between NextGen and the
classical models, provided a photometric accuracy of 0.01 magnitudes is
reached. This accuracy is now routinely achieved by alert networks, and hence
current observations can discriminate between such model atmospheres, providing
a unique insight on stellar photospheres.Comment: 4 pages, 4 figures, Astronomy & Astrophysics (Letters), vol. 388, L1
(2002
- …