49 research outputs found

    Online Optimization of Complex Transportation Systems

    Full text link
    This paper discusses online optimization of real-world transportation systems. We concentrate on transportation problems arising in production and manufacturing processes, in particular in company internal logistics. We describe basic techniques to design online optimization algorithms for such systems, but our main focus is decision support for the planner: which online algorithm is the most appropriate one in a particular setting? We show by means of several examples that traditional methods for the evaluation of online algorithms often do not suffice to judge the strengths and weaknesses of online algorithms. We present modifications of well-known evaluation techniques and some new methods, and we argue that the selection of an online algorithm to be employed in practice should be based on a sound combination of several theoretical and practical evaluation criteria, including simulation

    Online k-server routing problems

    Get PDF
    In an online k-server routing problem, a crew of k servers has to visit points in a metric space as they arrive in real time. Possible objective functions include minimizing the makespan (k-Traveling Salesman Problem) and minimizing the sum of completion times (k-Traveling Repairman Problem). We give competitive algorithms, resource augmentation results and lower bounds for k-server routing problems in a wide class of metric spaces. In some cases the competitive ratio is dramatically better than that of the corresponding single server problem. Namely, we give a 1+O((log¿k)/k)-competitive algorithm for the k-Traveling Salesman Problem and the k-Traveling Repairman Problem when the underlying metric space is the real line. We also prove that a similar result cannot hold for the Euclidean plane

    Combination therapy with oral treprostinil for pulmonary arterial hypertension. A double-blind placebo-controlled clinical trial

    Get PDF
    Rationale: Oral treprostinil improves exercise capacity in patients with pulmonary arterial hypertension (PAH), but the effect on clinical outcomes was unknown. Objectives: To evaluate the effect of oral treprostinil compared with placebo on time to first adjudicated clinical worsening event in participants with PAH who recently began approved oral monotherapy. Methods: In this event-driven, double-blind study, we randomly allocated 690 participants (1:1 ratio) with PAH to receive placebo or oral treprostinil extended-release tablets three times daily. Eligible participants were using approved oral monotherapy for over 30 days before randomization and had a 6-minute-walk distance 150 m or greater. The primary endpoint was the time to first adjudicated clinical worsening event: death; hospitalization due to worsening PAH; initiation of inhaled or parenteral prostacyclin therapy; disease progression; or unsatisfactory long-term clinical response. Measurements and Main Results: Clinical worsening occurred in 26% of the oral treprostinil group compared with 36% of placebo participants (hazard ratio, 0.74; 95% confidence interval, 0.56–0.97; P = 0.028). Key measures of disease status, including functional class, Borg dyspnea score, and N-terminal pro–brain natriuretic peptide, all favored oral treprostinil treatment at Week 24 and beyond. A noninvasive risk stratification analysis demonstrated that oral treprostinil–assigned participants had a substantially higher mortality risk at baseline but achieved a lower risk profile from Study Weeks 12–60. The most common adverse events in the oral treprostinil group were headache, diarrhea, flushing, nausea, and vomiting. Conclusions: In participants with PAH, addition of oral treprostinil to approved oral monotherapy reduced the risk of clinical worsening. Clinical trial registered with www.clinicaltrials.gov (NCT01560624)

    Euler is Standing in Line -- Dial-a-Ride Problems with Precedence-Constraints

    Get PDF
    In this paper we study algorithms for "Dial-a-Ride" transportation problems. In the basic version of the problem we are given transportation jobs between the vertices of a graph and the goal is to nd a shortest transportation that serves all the jobs. This problem is known to be NP-hard even on trees. We consider the extension when precedence relations between the jobs with the same source are given. Our results include a polynomial time algorithm on paths and approximation algorithms for general graphs and trees with performances of 9/4 and 5/3, respectively
    corecore