
Discrete Applied Mathematics 113 (2001) 87–107

Euler is standing in line dial-a-ride problems with
precedence-constraints

D. Hauptmeiera, S.O. Krumkea ; ∗;1, J. Rambaua, H.-C. Wirthb
aDepartment Optimization, Konrad-Zuse-Zentrum f�ur Informationstechnik Berlin, Takustr. 7,

14195 Berlin-Dahlem, Germany
bDepartment of Computer Science, University of W�urzburg, Am Hubland, 97074 W�urzburg, Germany

Abstract

In this paper we study algorithms for “Dial-a-Ride” transportation problems. In the basic
version of the problem we are given transportation jobs between the vertices of a graph and
the goal is to 3nd a shortest transportation that serves all the jobs. This problem is known to
be NP-hard even on trees. We consider the extension when precedence relations between the
jobs with the same source are given. Our results include a polynomial time algorithm on paths
and approximation algorithms for general graphs and trees with performances of 9=4 and 5=3,
respectively. ? 2001 Elsevier Science B.V. All rights reserved.

Keywords: Vehicle routing; Elevator system; Eulerian cycle; Approximation algorithms

1. Introduction and overview

Transportation problems where objects are to be transported between given sources
and destinations in a metric space are classical problems in combinatorial optimiza-
tion. Applications include the routing of pick-up-and-delivery vehicles, the control of
automatic storage systems and scheduling of elevators. This leads to the following op-
timization problem (DARP): We are given transportation jobs between the vertices of a
graph and the goal is to 3nd a shortest transportation that serves all the jobs.
A natural extension of DARP is the addition of precedence constraints between the

jobs that start at the same vertex. This variant which we call S-DARP is motivated by
applications in which 3rst-in-3rst-out waiting lines are present at the sources of the

∗ Corresponding author.
E-mail addresses: hauptmeier@zib.de (D. Hauptmeier), krumke@zib.de (S.O. Krumke), rambau@zib.de

(J. Rambau), wirth@informatik.uni-wuerzburg.de (H.-C. Wirth).
1 Research supported by the German Science Foundation (DFG, grant Gr 883=5-2).

0166-218X/01/$ - see front matter ? 2001 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(00)00390 -5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82247429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

88 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

transportation jobs. In this case, jobs can be served only according to their order in
the line. Examples with 3rst-in-3rst-out lines are cargo elevator systems where at each
Foor conveyor belts deliver the goods to be transported. Elevators also motivate the
restriction of DARP to paths, i.e., to the case where the underlying graph forms a path.
This paper is organized as follows. In Section 2 we formally state the problem

S-DARP. We also show that S-DARP can be equivalently formulated as a graph aug-
mentation problem. This key observation will be used to design our algorithms. In
Section 4 we prove structural facts about Eulerian cycles in a graph that respect a
given “source-order” on the arcs. (A formal de3nition of source-orders appears in Sec-
tion 2.2.)
Section 5 contains a polynomial algorithm for S-DARP when restricted to paths. In

Section 6 we present an approximation algorithm for general graphs with performance
of (�TSP + 3)=2, where �TSP is the performance of the best approximation for the TSP
with triangle inequality. An improved algorithm for trees with performance 5=3 is given
in Section 7. Section 8 is dedicated to hardness results. Section 9 brieFy discusses the
extension of our results to include start and stop penalties.

2. Preliminaries and problem formulations

A multiset X over a ground set U , denoted by X @ U , can be de3ned as a mapping
X :U → N, where for u ∈ U the number X (u) denotes the multiplicity of u in X . We
write u ∈ X if X (u)¿1. Any (standard) set can be viewed as a multiset with elements
of multiplicity 0 and 1. If Y @ U then X @ Y denotes a multiset over the ground set
{u ∈ U : Y (u)¿ 0 }. If X @ U and Y @ U are multisets over the same ground set U ,
then we denote by X + Y their multiset union, by X − Y their multiset di:erence and
by X ∩ Y their multiset intersection, de3ned for u ∈ U by

(X + Y)(u) = X (u) + Y (u);

(X − Y)(u) = max{X (u)− Y (u); 0};

(X ∩ Y)(u) = min{X (u); Y (u)}:
The multiset X @ U is a subset of the multiset Y @ U , denoted by X ⊆Y , if
X (u)6Y (u) for all u ∈ U . For a weight function c :U → R the weight of a mul-
tiset X @ U is de3ned by c(X):=

∑
u∈U c(u)X (u). We denote the cardinality of a

multiset X @ U by |X |:=∑
u∈U X (u).

A mixed graph G = (V; E; A) consists of a set V of vertices, a set E of undirected
edges without parallels, and a multiset A of directed arcs (parallel arcs allowed). An
edge with endpoints u and v will be denoted by [u; v], an arc from u to v by (u; v).
We denote by n:=|V |, mE :=|E| and mA:=|A| the number of vertices, edges and arcs,
respectively. For v ∈ V we let Av be the set of arcs in A emanating from v. For edge
set E, denote by

Ẽ:={(u; v); (v; u): [u; v] ∈ E} (1)

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 89

the set of arcs which contains for each undirected edge e ∈ E a pair of anti-parallel
arcs between the endpoints of e.
If X @ E + A, then we denote by G[X] the subgraph of G induced by X , that is,

the subgraph of G consisting of the arcs and edges in X together with their incident
vertices. A subgraph of G induced by vertex set X ⊆V is a subgraph with node set
X and containing all those edges and arcs from G which have both endpoints in X .
Throughout the paper we assume that G[E] is connected and for each arc from A
contains both endpoints. The out-degree of a vertex v in G, denoted by d+G(v), equals
the number of arcs in G leaving v. Similarly, the in-degree d−

G (v) is de3ned to be the
number of arcs entering v. If X @ A, we brieFy write d+X (v) and d−

X (v) instead of
d+G[X](v) and d−

G[X](v).
A graph G is called degree balanced if d+G(v) = d−

G (v) for all vertices v ∈ V . A
closed walk W in the mixed graph G= (V; E; A) is an alternating sequence of vertices
and edges=arcs W = (v1; x1; v2; : : : ; xk ; vk+1 = v1) where vi ∈ V and xi ∈ E + A for
i= 1; : : : ; k such that for any i either xi is an undirected edge [vi; vi+1] between vi and
vi+1 or a directed arc (vi; vi+1) from vi to vi+1. Notice that we allow the walk w to
visit vertices, edges and arcs multiple times. For a cost function c :E + A→ R¿0 the
cost of the walk W is given by c(W):=

∑k
i=1 c(xi).

A directed spanning tree rooted towards o ∈ V is a subgraph of a directed graph
H = (V; R) which is a tree and which has the property that for each v ∈ V it contains
a directed path from v to o.
Since most of the problems under study are NP-hard, we are interested in approx-

imation algorithms for them. Let � be a minimization problem. A polynomial-time
algorithm A is said to be a �-approximation algorithm for �, if for every problem
instance I of � with optimal solution value OPT(I) the solution of value A(I) returned
by the algorithm satis3es A(I)6�OPT(I).

2.1. Basic problem

In the “Dial-a-Ride Problem” DARP we are given a 3nite transportation
network and a 3nite set of transportation jobs. Each job speci3es the source and
target location which are both part of the network. A server which can
carry at most one object at a time can move on the transportation network to
process the transportation requests. The problem DARP consists of 3nding a
shortest transportation for the jobs starting and ending at a designated start
location.
We model the transportation network by an edge weighted undirected graph. Each

job request is modelled by an arc from its source node to its target node. The length
of the arc is adjusted to reFect the length of a shortest path in the network connecting
its endpoints. Then a closed walk in the resulting mixed graph which traverses each
arc corresponds to a transportation for all the jobs in the transportation network. More
formally, we de3ne DARP as follows:

90 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

De�nition 1 (Dial-a-Ride Problem (DARP)). The input for DARP consists of a 3nite
mixed graph G = (V; E; A), an origin vertex o ∈ V and a nonnegative weight function
c :E → R¿0.
The weight function c is extended to A by de3ning for each arc a ∈ A, a = (v; w),

its cost c(a) to be the length of a shortest path from v to w in G[E].
The goal of DARP is to 3nd a closed walk in G of minimum cost which starts (and

ends) in o and traverses each arc in A.

It turns out that for the purpose of stating algorithms in a more convenient way, it
is helpful to use an equivalent formulation of DARP as a graph augmentation problem
(cf. [5]). To this end consider the arc set Ẽ de3ned in (1). Let the cost of each arc in
Ẽ equal the cost of the corresponding edge in E.
With these de3nitions, we formulate a graph augmentation problem: Given mixed

graph G=(V; E; A), origin o ∈ V , and cost function c :E → R¿0, extend c to A+ Ẽ as
described in De3nition 1 and the previous paragraph. Then 3nd a multiset R, R @ Ẽ,
of minimum cost such that graph G[A+ R] is Eulerian and contains o. We argue that
this problem is an equivalent formulation of DARP.
Let W be a feasible solution for DARP as stated in De3nition 1, that is, a closed

walk that starts in o and traverses each arc in A. Construct a multiset R @ Ẽ of arcs
in the following way: Traverse edges and arcs along W . For each time an undirected
edge e ∈ E, e = [u; v], is traversed from u to v, add a copy of the directed arc (u; v)
to multiset R. Then graph G[A + R] contains o, and since W de3nes a cycle, graph
G[A+ R] must be Eulerian.
Conversely, let R @ Ẽ be a multiset of arcs such that G[A + R] is Eulerian and

includes the origin o. Construct a walk W as follows: Traverse an Eulerian cycle C
in G[A+ R] starting in o. If the current arc r from C is in A then add r to walk W ,
otherwise add the undirected edge corresponding to r. By this construction, W is a
closed walk in G traversing each arc from A and including o. In both cases we have
c(W) = c(A + R), i.e., the cost of walk W equals the cost of multiset R plus cost of
arc set A.

2.2. Precedence constraints

In real applications of DARP there are often additional constraints on the order of
the execution of transportation requests. This can be modelled by introducing a partial
order ≺ on the set of arcs. A feasible walk is then required to satisfy the condition
that, whenever a ≺ b, then a must be traversed before b by the walk.
In some transportation networks there is a “waiting pool” at each node where trans-

portation requests originate. Each of the pools constraints the order of execution of
requests starting from this node while requests starting from other nodes are not af-
fected. For instance there might be waiting pools with 3rst-in 3rst-out queues or wait-
ing stacks (last-in 3rst-out). This motivates the de3nition of a source-order, which is
a partial order satisfying: a ≺ b implies that a and b share the same source node. If a

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 91

Fig. 1. Precedence constraint b ≺ a increases the cost.

source-order ≺ satis3es: a and b share the same source node implies a ≺ b ∨ b ≺ a,
then ≺ is called a total source-order.
This leads to problem S-DARP (shorthand for “DARP with source-orders”) which is

the main focus of this paper. An instance of S-DARP consists of an instance of DARP,
together with a source-order ≺ on the arc set A. The goal is to 3nd a closed walk
satisfying the requirements speci3ed in De3nition 1 and the precedence constraint given
by ≺.
Fig. 1 shows an example where an optimal source-order respecting transportation is

strictly longer than the optimal transportation neglecting the precedences. If no con-
straints have to be obeyed, then the jobs can be served traversing only along the arcs. If
the constraint b ≺ a must be obeyed then two additional empty moves along undirected
edges are necessary.
For the sake of presentation it will be useful to formulate S-DARP as a graph aug-

mentation problem. We need some additional notations:

De�nition 2 (≺-respecting Eulerian cycle, ≺-Eulerian). Let H = (V; R) be a directed
graph, ≺ be a source-order on the arcs R, and o ∈ V . A ≺-respecting Eulerian cycle
in H with start o is a Eulerian cycle C in G such that a ≺ a′ implies that in the walk
from o along C the arc a appears before a′. The graph H is then called ≺-Eulerian
with start o.

Notice that in contrast to the case of classical Eulerian cycles, for ≺-respecting
Eulerian cycles it is meaningful to specify a start node explicitly.

De�nition 3 (Graph augmentation version of S-DARP). An instance of the problem
S-DARP consists of the same input as for DARP and additionally a source-order ≺ on
the arc set A. The goal is to 3nd a multiset S of arcs from Ẽ minimizing the weight
c(A+S) such that G[A+S] is ≺-Eulerian with start o, and to determine a ≺-respecting
Eulerian cycle in G[A+ S].

2.3. Related work

The problem DARP is also known as the Stacker–Crane-Problem. In [11] it is shown
that the problem is NP-hard even on trees, i.e., if the graph G[E] is a tree. In [12] the
authors present a 9=5-approximation algorithm for the problem on general graphs. An
improved algorithm for trees with performance 5=4 is given in [11]. On paths DARP
can be solved in polynomial time [5].

92 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

The extension of DARP where a vehicle of capacity C ¿ 1 is used to serve the
transportation jobs has been addressed in [14,6]. For capacity C ¿ 1 the problem be-
comes NP-hard even on paths. In [6] an approximation algorithm for the single server
dial-a-ride problem with performance O(

√
C log n log log n) was given, where C denotes

the capacity of the server and n denotes the number of vertices in the graph.
Precedence constraints have been studied in the case of Chinese Postman tours in

[9]. (Recall that the Chinese Postman Problem consists of 3nding a shortest walk in a
graph that traverses all edges and arcs.) The authors show that for general precedence
relations it is NP-hard to determine a Chinese Postman tour of minimum length. Under
strong restrictions on the precedence relation the problem can be solved in time O(n5),
where n denotes the number of vertices in the input graph.
Online variants of DARP have been investigated in [3,4,10]. All of the known com-

petitive algorithms have to solve oOine instances of DARP during their run. The per-
formance of the employed oOine algorithm directly aPects the competitive ratio of
the online algorithm. Thus, the construction of eQcient polynomial time (approxi-
mation) algorithms for DARP is important to obtain practical, i.e., run-time eQcient
online algorithms. If a �-approximation algorithm for DARP is given, the “Smartstart”-
strategy presented in [4] yields a polynomial time c�-competitive algorithm for online-
DARP with competitive ratio c� = 1

4(4�+ 1 +
√
1 + 8�).

3. Basic observations and balancing

Throughout the paper we will use S∗ @ Ẽ to denote an optimal solution (augmen-
tation set) and OPT:=c(A+ S∗) to denote its cost. We 3rst start with some technical
assumptions about input instances (G = (V; E; A); c; o;≺) of S-DARP. While all these
assumptions are without loss of generality they greatly simplify the presentation of our
algorithms.

Assumption 4 (Technical assumption for S-DARP on trees). Each vertex of degree
one or two in G[E] is either the origin o or incident to at least one arc from A.

The above assumption is indeed no restriction: Let v �= o be not adjacent to any arc
in A. If v is of degree two, replace the two adjacent edges, say [v; u] and [v; w], by
the single edge [u; w] of cost equal to the sum of the two edges. If v is a leaf, it can
be removed without aPecting the optimal solution (cf. [11] for DARP on trees).
If G[E] is a path it is easy to see that we can make an even stronger assumption

without loss of generality (cf. [5] for DARP on paths):

Assumption 5 (Technical assumption for S-DARP on paths). Each vertex v ∈ V is
incident to at least one arc from A.

We now turn to S-DARP on general graphs.

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 93

Assumption 6 (Technical assumption for S-DARP on general graphs). (i) Each vertex
v ∈ V is incident to at least one arc from A. (ii) G[E] is complete and the cost func-
tion c obeys the triangle inequality, i.e., for any edge e ∈ E; e = [u; v]; the cost c(e)
does not exceed the length of a shortest path in G[E] between u and v.

Assumption 6 can be enforced without increasing the value of an optimal solution.
If the start vertex o is not incident to any arc from A, insert a new vertex o′ joined by
arc (o; o′) and edge [o; o′] to the start vertex, each of cost zero. To satisfy the triangle
inequality, for every pair u; v of vertices add a new edge [u; v] of cost equal to the
shortest path in G[E] between u and v.
Afterwards each bundle of parallel edges can be replaced by retaining the cheapest

edge of the bundle, and vertices which are not incident to an arc can be removed
safely (cf. [12] for DARP).
However, Assumption 6 cannot be made without loss of generality for S-DARP on

trees, since the suggested modi3cation of the graph destroys the “tree-property”.
A necessary condition for a graph to be Eulerian is that for each node its in-degree

equals its out-degree. It turns out to be helpful for solving S-DARP to search for aug-
menting sets which guarantee the resulting graph to be balanced in that way.

De�nition 7 (Balancing set). Let G = (V; E; A) be a mixed graph. A multiset B @ Ẽ
of arcs is called a balancing set if in H = G[A + B] we have d+H (v) = d−

H (v) for all
vertices v of H .

Suppose that G[E] is a tree and that Assumption 4 is satis3ed. For a partition
V =X ∪Y of the vertex set de3ne the cut (X : Y) to consist of all edges and arcs from
E + A with one endpoint in X and the other one in Y . Any edge [x; y] ∈ E de3nes
a partition V = X ∪ Y of the node set, where X and Y are de3ned by the connected
components after removing the edge [x; y] from the tree. Obviously, the cut (X : Y)
must be traversed by any closed walk W the same number of times in each direction.
Denote by '(X; Y):=|{ (x; y) ∈ A | x ∈ X ∧y ∈ Y }| the number of arcs emanating from
X . Hence, if W traverses all arcs from A, it must traverse edge [x; y] from x to y at
least b(x; y) times, where

b(x; y):=

1 if '(X; Y) = '(Y; X) = 0;
'(Y; X)− '(X; Y) if '(Y; X)¿ '(X; Y);
0 otherwise:

This observation has the following consequence for the graph augmentation version:
If B @ Ẽ is a multiset of arcs such that B((x; y)) = b(x; y), that is, B contains b(x; y)
copies of the directed arc (x; y), then there is at least one optimal solution S∗ such
that B⊆ S∗. This yields the following lemma which is proved in [5,11].

Lemma 8. Let (G; c; o) be an instance of DARP such that G[E] is a tree. Then in
time O(nmA) one can @nd a balancing set B @ Ẽ such that B⊆ S∗ for some optimal
solution S∗.

94 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

Notice that Lemma 8 remains valid even in the presence of source-orders. As is also
shown in [5,11] the time bound of O(nmA) can be improved to O(n+mA) by allowing
balancing arcs to be from V×V instead of just Ẽ (which does not change the problem:
the cost function c is extended from Ẽ to V × V by the length of shortest paths).

4. Euler cycles respecting source-orders

Let C be an Eulerian cycle starting at o in a connected directed graph. We de3ne
the set of last arcs of C, denoted by LC , to contain for each vertex v ∈ V the unique
arc emanating from v which is traversed last by C. One can observe that LC consists
of a directed spanning tree rooted towards o plus one single arc emanating from o. In
the following we will examine the situation for source-order respecting Eulerian cycles.
Let ≺ be a source-order. We denote the set of maximal elements with respect to ≺

by M≺, that is, M≺:={a ∈ A: there is no arc a′ such that a ≺ a′}.

De�nition 9 (Possible set of last arcs). Let H=(V; R) be a directed graph and o ∈ V
be a distinguished vertex. A set L⊆R is called a possible set of last arcs, if it satis3es
the following conditions:
(i) d+L (v) = 1 for all v ∈ V , and
(ii) for each v ∈ V there is a path from v to o in H [L].

We remark that this de3nition is equivalent to the following: a set L is a possible
set of last arcs, if H [L] is a directed spanning tree rooted towards o, plus one arbitrary
arc emanating from o. The following theorem justi3es the nomenclature “possible set
of last arcs”:

Theorem 10. Let H = (V; R) be a directed Eulerian graph with distinguished vertex
o ∈ V and let ≺ be a source-order with maximal elements M≺. Suppose that a
possible set L of last arcs satis@es L⊆M≺.
Then there exists an ≺-respecting Eulerian cycle C with start o in H such that

LC = L; i.e.; such that L is the set of last arcs of C. This cycle can be found in time
O(|V |+ |R|).

Proof. Color the arcs from L red and the arcs in R \ L blue. We claim that by the
following procedure we construct an Eulerian cycle C in H with the desired properties.
Start with current vertex o. As long as there is a blue untraversed arc emanating from
the current vertex, choose one which is not ≺-preceeded by any other untraversed arc,
otherwise choose the red arc. Traverse the chosen arc, let its target be the new current
vertex, and repeat the iteration. Stop, if there is no untraversed arc emanating from
the current vertex. Call the resulting path of traversed arcs C. Since H is Eulerian by
assumption, for each vertex its in-degree equals its out-degree. Therefore, C must end
in the origin o and forms in fact a cycle. Moreover, C is ≺-respecting by construction

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 95

since L⊆M≺. Hence, if we can show that C traverses all arcs from R then this implies
L= LC and the proof is complete.
To this end, de3ne for each node v ∈ V , the value dist(v; o) to be the distance (i.e.,

the number of arcs) on the shortest path from v to o in the subgraph H [L]. We show
by induction on dist(v; o) that all arcs emanating from v are contained in C.
If dist(v; o)=0 then v=o. Since our procedure stopped, all arcs emanating from o are

contained in C. This proves the induction basis. Assume that the claim holds true for
all vertices with distance t¿0 and let v ∈ V with dist(v; o)= t+1. Let a=(v; w) be the
unique red arc emanating from v. Then dist(w; o) = t and by the induction hypothesis
all arcs emanating from w are contained in C. For d+H (w) = d−

H (w), it follows that
all arcs entering w, in particular arc a, are also contained in C. Since red arc a is
chosen last by our procedure, all other arcs emanating from v must be contained in C.
This completes the induction. Hence, C is actually an Eulerian cycle with the claimed
properties.

Corollary 11. Let H = (V; R) be a graph; o ∈ V and ≺ a source-order. Then the
following two statements are equivalent:
(1) H is ≺-Eulerian with start o.
(2) H is Eulerian and the set M≺ of maximal elements with respect to ≺ contains

a possible set of last arcs.

Proof. Suppose that H is ≺-Eulerian with start o, and let C be an ≺-respecting
Eulerian cycle with start o in H . Then LC ⊆M≺. Thus Statement 1 implies 2. The
other direction is an immediate consequence of Theorem 10.

The above corollary implies a polynomial time algorithm for deciding whether a
given graph H is ≺-Eulerian with start o. Provided H is Eulerian it suQces to check
whether the subgraph formed by the arcs from M≺ contains a possible set of last arcs.
By the remark from above this check can be essentially performed by testing whether
M≺ contains a directed spanning tree D rooted towards o (which can be done in linear
time).

5. A polynomial time algorithm for S-DARP on paths

We now present Algorithm Alg-Path which solves S-DARP on paths. Let
G = (V; E; A) be a mixed graph such that G[E] is a path. We assume throughout
this section that Assumption 5 holds.
The algorithm starts in Step 2 by determining a suitable balancing set B @ Ẽ which

is guaranteed to be contained in some optimal solution (following the results of Lemma
8). At this point, the graph G[A + B] is degree balanced but may consist of several
connected components. In order to turn the graph ≺-Eulerian with start o, the idea is
to connect the components by pairs of antiparallel arcs from set Ẽ and in the same
moment ensuring the existence of a possible set of last arcs.

96 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

This task is performed in two parts by the algorithm: In Step 3, a directed spanning
tree rooted towards o of minimum cost is computed with respect to an auxiliary cost
function. This cost function is adjusted to measure only the additional arcs that are not
yet contained in A+B. In Step 5 an auxiliary arc set N is de3ned which contains those
additional arcs together with their inverse arcs. This guarantees that G[A + B + N] is
in fact ≺-Eulerian which is proved formally in the following lemma:
Lemma 12. The set B + N returned by Algorithm Alg-Path is a feasible solution
for S-DARP; i.e.; G[A+ B+ N] is ≺-Eulerian with start o.

Proof. Since G[A+B] is degree balanced and N consists of pairs of anti-parallel arcs,
also G[A+B+N] is degree balanced. By construction, G[A+B+N] contains a directed
spanning tree rooted towards o, namely the tree D computed in Step 3. Hence it is
strongly connected and Eulerian.
The set L of arcs determined in Step 4 is clearly a possible set of last arcs. The

claim now follows from Theorem 10.

It remains to show that the solution produced by Algorithm Alg-Path is not
only feasible but also of minimum cost.

Theorem 13. Algorithm Alg-Path @nds an optimal solution for S-DARP on paths.

Proof. Let S∗ be an optimal solution such that B⊆ S∗ (by Lemma 8 such a multiset
S∗ exists). By feasibility of S∗ the graph G[A+ S∗] is ≺-Eulerian with start o.
Consider the multi-set Z :=(A+ S∗)− (A+ B) = S∗ − B. Since G[A+ B] and G[A+

S∗] = G[A+ B+ Z] are degree balanced and Z ∩ (A+ B) = ∅, we can decompose the
set Z into arc disjoint cycles. Since Z consists of (multiple copies of) arcs from Ẽ and
G[E] is a tree it follows that r ∈ Z implies that r−1 ∈ Z .
Let C be a ≺-respecting Eulerian cycle in G[A+S∗] and let L be its last set of arcs.

Notice that L⊆B+M≺ + Z , where M≺ is de3ned in Step 1 of the algorithm. The set
L must contain a directed spanning tree D′ rooted towards o. We partition D′ into the
sets D′

B+M≺ :=D′∩(B+M≺) and D′
Z :=D′∩Z . Thus, c′(D′

B+M≺)=0 and c′(D′
Z)=c(D′

Z).
Since we have seen that for each arc r ∈ Z also its anti-parallel version r−1 ∈ Z (and
D′

Z does not contain a pair of anti-parallel arcs) we get that

c(Z)¿2c(D′
Z) = 2c

′(D′
Z) + 2c

′(D′
B+M≺) = 2c

′(D′)¿2c′(D): (2)

Here, D is the directed spanning tree of minimum weight computed in Step 3. The set
N computed in Step 5 has cost

c(N) = 2c(D \ (B+M≺)) = 2c′(D \ (B+M≺)) = 2c′(D)
(2)
6 c(Z): (3)

Using this result yields that

c(A+ B+ N) = c(A+ B) + c(N) = c(A+ (S∗ \ Z)) + c(N)
(3)
6 c(A+ (S∗ \ Z)) + c(Z) = c(A+ S∗):

Thus, B+ N is an optimal solution as claimed.

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 97

We brieFy comment on the running time of Algorithm Alg-Path. A balancing
set B can be found in time O(nmA) by techniques as shown in [5]. As noted be-
fore this time bound can be improved to O(n + mA) by allowing balancing arcs to
be from V × V instead of just Ẽ. A rooted spanning tree of minimum weight in a
graph with n vertices and m arcs can be computed in time O(min{m log n; n2}) by the
algorithm from [17]. Thus Algorithm Alg-Path can be implemented to run in time
O(n+ mA +min{(mA + n) log n; n2}).

6. An approximation algorithm for general graphs

In this section we present our approximation algorithm for S-DARP on general graphs.
The algorithm uses ideas similar to the ones in [12]. In this section we will assume
tacitly that Assumption 6 is satis3ed.
Our algorithm actually consists of two diPerent sub-algorithms, Alg-TSP and Alg-

Last-Arcs, which are run both and the best solution is picked. The 3rst sub-algorithm,
Alg-TSP, is extremely simple: It computes a shortest TSP-tour

Algorithm 1: Algorithm Alg-Path for S-DARP on paths.

Input: A mixed graph G = (V; E; A), such that G[E] is a path, a cost function c on
E, an initial vertex o ∈ V , and a source-order ≺

1 Let M≺ be the set of maximal elements with respect to ≺.
2 Compute a balancing set B @ Ẽ such that B⊆ S∗ for some optimal solution S∗.
3 Compute a directed spanning tree D rooted towards o in G[B + M≺ + Ẽ] of

minimum weight c′(D), where cost function c′ is de3ned as follows:

c′(r) =
{
0 if r ∈ B+M≺;
c(r) if r ∈ Ẽ \ (B+M≺):

4 De3ne a possible set L of last arcs by L:=D ∪ {r}, where r is an arbitrary arc
from Ao ∩ (M≺ + B)
{Notice that such an arc must exist since o is source or target of at least one
job and G[A+ B] is degree-balanced}.

5 Let D+:=D − (B+M≺) and N :=Ẽ ∩ (D+ ∪ D−1
+).

{ The set N contains the set D+ of “new arcs” from the tree D and their inverses
D−1
+ }:

6 Use the method from Theorem 10 to 3nd a ≺-respecting Eulerian cycle C with
start o in G[A+ B+ N] such that L is the set of last arcs of C.

7 return the multiset B+ N and the cycle C.

that visits each vertex v with d+A (v)¿ 0. Then, it uses this TSP-tour to obtain a feasible
solution for S-DARP: The solution traverses along the TSP-tour, and whenever a vertex v
is reached where arcs are emanating from, for each arc in Av the TSP-tour is augmented

98 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

by a loop traversing that arc and a shortest path back to vertex v. The algorithm is
displayed in Algorithm 2.
We now prove a bound on the quality of the solution found by the TSP-based

algorithm Alg-TSP.

Lemma 14. If in Step 3 of Alg-TSP a �TSP-approximation algorithm for computing
a TSP-tour is employed; then the algorithm @nds a solution of cost at most �TSP OPT+
2c(A).

Proof. Let S∗ be an optimum augmenting set and C∗ be a ≺-respecting Eulerian cycle
in G[A+ S∗] starting at o. Since C∗ visits all vertices from Vsource (the set of vertices
from V which are sources of arcs from A) the length of C∗ (which equals OPT) is
at least that of a shortest TSP-tour on Vsource. Thus, the tour computed in Step 3 will
have length at most �TSP OPT. The additional cost incurred in Step 7 is not greater
than 2c(A), since each path added has

Algorithm 2: TSP-based approximation algorithm Alg-TSP for S-DARP.

Input: A mixed graph G = (V; E; A), a cost function c on E, an initial vertex o ∈ V ,
and a source-order ≺

1 Let Vsource be the set of vertices which are sources of arcs from A.
2 Compute a complete undirected auxiliary graph U with vertex set Vsource.

The weight d(v; w) of edge [v; w] is set to be the length of a shortest path
in G[E] from v to w.

3 Find an approximately shortest TSP tour p in U . Assume that p visits the
nodes of Vsource in order (o= v0; v1; : : : ; vs; vs+1 = o).

4 Construct a feasible tour C for S-DARP as follows:
5 Start with the empty tour C.
6 for i:=0; : : : ; s do
7 Assume that Avi = {a1; : : : ; ak} with ai ≺ aj ⇒ i ¡ j.
8 For j = 1; : : : ; k, let pj be a directed shortest path in G[Ẽ] from the

endpoint of aj to vi.
9 Add the k loops a1p1; : : : ; akpk to C.
10 Append to C the directed shortest path in G[Ẽ] from vi to vi+1.
11 end for
12 Let S ← C − A.
13 return the set S and the cycle C.

the weight of the corresponding arc from A.

Since the cost of the optimum tour serving all jobs is at least c(A), Lemma 14 implies
that Alg-TSP is a (�TSP +2)-approximation algorithm for S-DARP. Using Christo3des’
algorithm [7] we get �TSP = 3=2 and thus Alg-TSP implies a 7=2-approximation for
S-DARP. In the sequel we will improve this bound by providing a second algorithm
and combining this algorithm with Alg-TSP.

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 99

Our second algorithm, Alg-Last-Arcs, is based on similar ideas as the algorithm
from Section 5 for paths. We 3rst compute a set of balancing arcs B which makes
G[A+ B] degree balanced. Again, we then compute a rooted tree directed towards the
origin o of minimum cost, double the new arcs which are not yet in A + B and add
the resulting set N to the solution. Alg-Last-Arcs is shown in Algorithm 3.
By a proof similar to Lemma 12 it follows that the set B+ N found by Algorithm

Alg-Last-Arcs is indeed a feasible solution.

Lemma 15. The balancing set B found in Step 1 of algorithm Alg-Last-Arcs has
cost at most OPT − c(A). Step 1 can be accomplished in the time needed for one
minimum cost Aow computation on a graph with n vertices and 2mE arcs.

Algorithm 3: Algorithm Alg-Last-Arcs “mimicking” the algorithm for paths.
Input: A mixed graph G = (V; E; A), a cost function c on E, an initial vertex o ∈ V ,

and a source-order ≺
1 Compute a balancing multiset B @ Ẽ of minimum cost.
{How this step can be accomplished with the help of a minimum cost 1ow
computation is described in detail in Lemma 15}.

2 Follow steps 1 and 3 to 6 of Algorithm Alg-Path to compute a set N of
arcs and a ≺-respecting Eulerian cycle C with start o.

3 return the set B+ N and the cycle C

Proof. Let S∗ @ Ẽ be an optimal solution, i.e., an augmenting multiset of arcs from
Ẽ with minimum cost. Then the graph G[A+ S∗] is ≺-Eulerian with start o. Thus, the
addition of the arcs from S∗ turns G Eulerian, in particular degree balanced. Thus, the
cost c(S∗) =OPT− c(A) is at least that of a minimum cost set B @ Ẽ which achieves
the degree balance.
Step 1 can be carried out by performing a minimum cost Fow computation in the

auxiliary graph F = (V; Ẽ). A vertex v has charge d−
G (v) − d+G(v) and the cost of

sending one unit of Fow over arc r ∈ Ẽ equals its cost c(r). We then compute an
integral minimum cost Fow in F . If the Fow on an arc r is t ∈ N, we add t copies
of arc r to the multiset B.

We continue to prove an upper bound on the cost of the set N of new arcs and
their inverses computed in Step 2 of Alg-Last-Arcs.

Lemma 16. The cost of the arc set N computed by Alg-Last-Arcs is at most
2(OPT − c(A)).

Proof. The proof of the lemma is similar to the one for Theorem 13. The major
diPerence is that in general we cannot assure that the balancing set B computed in
Step 1 is a subset of an optimal solution.

100 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

Let S∗ be again an optimal augmenting set and L be the set of last arcs of a
≺-respecting Eulerian cycle in G[A+ S∗]. We can 3nd a directed spanning tree rooted
towards o in L. The only arcs from A that L can contain are those from the set M≺.
Thus L− (A+ B) = L− (M≺ + B). Similar to Theorem 13 we can now conclude that

OPT− c(A) = c(S∗)¿c(L− (A+ B)) = c(L− (M≺ + B)) = c′(L)¿c(N)=2:

This shows the claim.

Lemmas 15 and 16 imply the following bound on the performance of Algorithm
Alg-Last-Arcs:

Corollary 17. Alg-Last-Arcs @nds a solution of cost at most 3OPT − 2c(A).

Proof. By Lemma 15, c(A + B)6OPT. Lemma 16 establishes that c(N)62OPT −
2c(A). Thus c(A+ B+ N)63OPT− 2c(A) as claimed.

We are now ready to combine our algorithms Alg-TSP and Alg-Last-Arcs into
one with an improved performance guarantee. The combined algorithm Alg-Combine
simply runs both algorithms and picks the better solution.

Theorem 18. Algorithm Alg-Combine has a performance of 1
2 (�TSP + 3).

Proof. Let 5:=4=(3−�TSP). If OPT65c(A), then the solution returned by Alg-TSP has
cost at most(

�TSP +
2
5

)
OPT =

(
�TSP + 2

3− �TSP

4

)
OPT =

�TSP + 3
2

OPT:

If OPT¿ 5c(A), then the cost of the solution found by Alg-Last-Arcs is bounded
from above by(

3− 2
5

)
OPT =

(
3− 23− �TSP

4

)
OPT =

�TSP + 3
2

OPT:

This shows the claim of the theorem.

Using Christo3des’ algorithm [7] with �TSP=3=2 results in a performance guarantee
of 3=4 + 3=2 = 9=4 for algorithm Alg-Combine.

Corollary 19. There is an approximation algorithm for S-DARP with performance
9=4. This algorithm can be implemented to run in time O(max{n3+mAmE+mAn log n;
m2

E log n+ mEn log2n}).

Proof. The performance has already been proved. The running time of Algorithm
Alg-TSP is dominated by that of Christo3des’ algorithm, which can be implemented
to run in time O(n3), and the time needed for the addition of the paths in Step 7
which can be done in total time O(mAmE +mAn log n). The running time of Alg-Last-

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 101

Arcs is dominated by the minimum cost Fow computation which can be accomplished
in time O(m2

E log n+mEn log2n) by using Orlin’s enhanced capacity scaling algorithm
[1].

7. Improved approximation algorithm on trees

For graph classes where the TSP can be approximated within a factor better than
3=2, the performance improves over the one stated in Corollary 19. In particular, for
trees where the TSP can be solved in polynomial time Theorem 18 already implies a
2-approximation algorithm. However, we can still improve this performance guarantee.

Theorem 20. There exists a polynomial time approximation algorithm for S-DARP
on trees with performance 5=3. This algorithm can be implemented to run in time
O(nmA + n2 log n).

Proof. Our algorithm for trees uses a modi3ed version of Alg-Last-Arcs. We
defer removal of the vertices in V which are neither start nor endpoint of an arc
from A and the completion of G via shortest paths until after the (modi3ed) balanc-
ing step. The balancing step Step 1 of Alg-Last-Arcs is modi3ed so that we 3nd a
balancing subset B @ S∗ as in Lemma 8. After the balancing we remove all vertices
which are not incident to the arcs in A + B and continue with Alg-Last-Arcs from
Step 2 on.
Let I =(G=(V; E; A); c; o;≺) be the original instance given such that G[E] is a tree.

We can consider the instance I ′=(G=(V; E; A+B); c; o;≺) of S-DARP (still on a tree)
which results from adding the balancing arcs B as new transportation jobs. Since any
feasible solution to I will have to use the arcs from B anyway (cf. Lemma 8), we get
that OPT(I) = OPT(I ′).
Now look at the instance I ′′ of S-DARP which is obtained by removing vertices

and completing G along shortest paths as in our algorithm. It is easy to see that
OPT(I ′′)=OPT(I ′). Notice also that we can transform any feasible solution of I ′′ to a
feasible solution of I ′ (by replacing arcs not in Ẽ by shortest paths). Let S∗ and S ′′ be
optimal solutions for I and I ′′, respectively. De3ne Z :=S∗ \ B and Z ′′:=S ′′ \ B. Since
OPT(I) = c(A+ B) + c(Z) =OPT(I ′′) = c(A+ B) + c(Z ′′), we have that c(Z) = c(Z ′′).
Let A + B + N be the solution of instance I found by the modi3ed version of

Alg-Last-Arcs. Then, using the arguments of Lemma 16 we get that

c(A+ B+ N) = c(A+ B) + c(N) = c(S∗)− c(Z) + c(N)

6 c(S∗)− c(Z) + 2c(Z ′′) = c(S∗) + c(Z)

= 2OPT(I)− c(A):

As noted before, Alg-TSP 3nds a solution of cost at most OPT + 2c(A), since we
can solve the TSP on the tree G[E] in polynomial time. We can estimate the cost of
the best of the two solutions returned by the modi3ed Alg-Last-Arcs and Alg-TSP

102 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

by the techniques from the proof of Theorem 18: if c¿ 1
3OPT, then the cost of the

solution produced by the 3rst algorithm is bounded by

2OPT− c(A)62OPT− 1
3 OPT =

5
3 OPT:

Otherwise, for c6 1
3 OPT, the cost of the solution produced by the second algorithm is

bounded by

OPT + 2c(A)6OPT + 2
3 OPT =

5
3 OPT:

This yields an overall performance of 5=3 as claimed.
The time bound for the algorithm is derived as follows: We can solve the TSP

on the metric space induced by G[E] in time O(n). We then root the tree G[E] at
an arbitrary vertex. With O(n) preprocessing time, the least common ancestor of any
pair of vertices can be found in constant time (see [15,16]). Thus, we can implement
Alg-TSP in such a way that the invocations of Step 7 take total time O(nmA). This
means that Alg-TSP can be implemented to run in time O(nmA).
The balancing in the modi3ed version of Alg-Last-Arcs can be accomplished

in time O(n + mA). Completion of the graph by computing all-pairs shortest paths
can be done in time O(nmE + n2 log n) = O(n2 log n) [8,1]. All other steps can be car-
ried out in time O(n2) where again the algorithm from [17] is employed for computing
a minimum weight directed spanning tree.

8. Hardness results

Since S-DARP generalizes DARP, it follows from the hardness result in [11] that
S-DARP is NP-hard even on trees. We show that this hardness continues to hold even
if the source-order ≺ is a total source-order. We can also strengthen the hardness
result of [11] and show that DARP is hard on caterpillar graphs. This is in contrast to
an application of DARP in the next section where caterpillar graphs naturally arise.
A caterpillar graph is a special case of a tree, consisting of a path, called the

backbone of the caterpillar, and additional vertices of degree one, called the feet of
the caterpillar. The edges between vertices on the path and feet are called hairs. We
restrict the class of caterpillars further to those graphs where no two hairs are incident,
i.e., the nodes on the backbone are of maximum degree 3.

Theorem 21. DARP and S-DARP on caterpillars are NP-hard to solve. This result con-
tinues to hold; if the transportation jobs are restricted to have sources and targets
only in the feet of the caterpillar. Furthermore; all hardness results for S-DARP remain
true if the source-ordering is restricted to be total.

Proof. We 3rst address the hardness of DARP. The hardness is shown by a reduc-
tion from the Steiner tree problem on bipartite graphs, BIPARTITE-STP. An instance of
BIPARTITE-STP consists of a bipartite graph H = (X ∪ Y; F) and a nonnegative number

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 103

Fig. 2. Transformation of the Steiner tree problem on a bipartite graph into DARP on a caterpillar in Theorem
21.

k6|F |. It is NP-complete to decide whether there exists a subtree of H that spans all
the vertices in Y and has at most k edges [13, Problem ND12].
One can make two assumptions on H without loss of generality: First, each vertex

in Y has degree at least two. Otherwise, for a vertex y ∈ Y with degree one, there
is no choice than including the unique edge incident on y in the Steiner tree. Second,
H is connected. Otherwise, either there is a connected component containing Y , or H
cannot contain a Steiner tree for the set Y .
Let H =(X ∪ Y; F) be an instance of BIPARTITE-STP. We create an instance I =(G=

(V; E; A); c; o) of DARP. The construction of graph G is illustrated in Fig. 2. Start with
a graph consisting of 2|F | nodes and |F | pairwise nonincident edges. For each edge
[x; y] ∈ F where x ∈ X and y ∈ Y , choose a yet unlabeled edge in G and label its
endpoints by x and y, respectively. Now create the backbone of the caterpillar graph by
inserting a path of |F |−1 additional edges. These backbone edges are inserted between
nodes with labels from X in such a way that for each x ∈ X the graph induced by the
nodes labeled x in G is a connected path, denoted by P(x).
Set the weight of a backbone edge with two endpoints sharing the same label to

0, and the weight of backbone edges with two diPerent labels to some large number
M :=2|F |+ 1. Set the weight of a hair to 1.
The arc set A is constructed as follows: For y ∈ Y denote by S(y) the set of foot

vertices in G labeled with y. Then, for each y ∈ Y , choose a directed simple cycle
connecting S(y) and add its arc set to A. Finally, the origin o of the server is chosen to
be the source of an arbitrary arc in A. Observe that by construction the graph G[A] is
degree balanced. It consists of the set of connected components {S(y) |y ∈ Y}. Each
of the components is strongly connected and Eulerian.
Let C =

∑
a∈A c(a). We claim that H contains a Steiner tree with at most k edges

if and only if there is a feasible solution to the instance I of DARP with cost at most
C + 2k.
Suppose that T is a Steiner tree in H with at most k edges connecting the vertices

in Y . We construct a multiset S of arcs, S @ Ẽ, such that G[A + S] is Eulerian and
contains o and c(A + S)6C + 2k: For each x ∈ X spanned by T , add all arcs from

the set
→

P(x) to S (these arcs are of cost 0). For each edge [x; y] ∈ T , add a pair
of antiparallel arcs between the endpoints of the unique hair labeled [x; y] to multiset
S (these arcs are of cost 1 each). By this construction, graph G[A + S] is degree

104 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

balanced. Since T was spanning Y and connected, G[A+ S] is strongly connected and
hence Eulerian. Further, c(A+ S)6C + 2k. This shows the 3rst direction.
Assume conversely that S, S @ Ẽ, is a feasible solution for instance I , and its cost

satisfy c(A+ S)6C+2k. Then G[A+ S] is Eulerian and contains o. The set S cannot
contain any arc of cost M , since otherwise c(A + S) = c(A) + c(S)¿C + M = C +
2|F |+ 1¿ C + 2k.
We now de3ne a subgraph T of H as follows: For each x ∈ X , y ∈ Y , if S contains

(at least one copy) of an arc between a vertex in P(x) and S(y) in arbitrary direction,
then the edge [x; y] is included in T . Since G[A] and G[A + S] are degree balanced
and S ∩A= ∅, we can decompose S into arc disjoint cycles. Since S @ Ẽ and G[E] is
a tree it follows that r ∈ S implies that the inverse arc r−1 must also be contained in
S. Hence, T consists of at most c(S)=2 = k edges.
It remains to show that T is connected and spans the vertices in Y . To this end,

let y1 and y2 be two arbitrary vertices from Y . Since y1; y2 are incident with arcs
from A, and G[A+S] is strongly connected, there is a directed path (r1; : : : ; rt) from a
node labeled y1 to one labeled y2 in G[A+S]. The node labels along this path change
only when ri is of type ri = (x; y) or ri = (y; x) for suitable x ∈ X and y ∈ Y . By
construction, tree T contains edge [x′; y′] in this case. Hence, T connects y1 and y2.
This completes the proof of the hardness results for DARP.
Since |Av|61 for all nodes v in the construction used above, by choosing ≺ to be

the empty relation the hardness for S-DARP immediately follows.

9. S-DARP with start and stop penalties

In this section we show how to extend our results to the case when there are start-
and stop-penalties for the service vehicle, which makes the problem more realistic in
view of applications. In elevator systems the time that the elevator needs to accelerate
or decelerate in order to pick up or deliver its load can usually not be neglected. Thus,
it is natural to penalize each stop and start of the server on its route.
In the Dial-a-Ride-Problem with penalties, short PENALTY-S-DARP, we are given ad-

ditional penalty functions p+ and p− on the set of vertices, where p+(v) is the time
penalty for starting from a vertex and p−(v) is the penalty for stopping at a vertex.
The objective is to 3nd a closed walk serving all requests, such that the cost of the
walk plus the cost of starting and stopping is minimized.
To formulate PENALTY-S-DARP in a meaningful way as a graph augmentation problem,

we have to allow augmenting arcs from V × V and not just from Ẽ, since each arc
corresponds to a move and incurs a start and stop penalty. The cost function c :E →
R¿0 is extended by de3ning the cost of arc (v; w) to be the length of a shortest path
from v to w in G[E].

De�nition 22 (Graph augmentation version of Penalty-S-DARP). An instance of
PENALTY-S-DARP consists of the same input as for S-DARP together with additional

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 105

penalty functions p+; p− :V → R¿0 on the set of vertices V . The objective is to 3nd
a multiset S of arcs, S @ V × V , minimizing the weight

c(A+ S) +
∑

u∈U+

d+(u)p+(u) +
∑

u∈U−
d−(u)p−(u)

such that G[A+ S] is ≺-Eulerian with start o. Here, U+ is the set of sources of arcs
in A+ S and U− is the set of endpoints of arcs in A+ S.

In the sequel we show that an instance I = (G = (V; E; A); c; o;≺; p−; p+) of
PENALTY-S-DARP can be transformed into an equivalent instance of S-DARP I ′ = (G′ =
(V ′; E′; A′); c′; o′;≺′) on a slightly larger graph.
The transformation is accomplished as follows: For each vertex v ∈ V we add both

v and a new vertex v(±) to V ′. Vertex v(±) is used to model starting or stopping at
vertex v. The set E′ consists of the edges in E and an additional edge ev between v and
v(±) for each vertex v ∈ V . The cost of the new edges is c′(ev) = (p+(v) +p−(v))=2.
The cost function c′ coincides with c on the set E. For each arc a=(u; v) ∈ A we add
an arc a′ = (u(±); v(±)) to A′ (the arcs in A are not contained in A′). The partial order
on the set A′ is induced naturally by that on A. Finally, the start vertex o′ equals o.

Lemma 23. Let I = (G; c; o;≺; p+; p−) be an instance of PENALTY-S-DARP and I ′ =
(G′;≺; c′; o′) be the instance of DARP constructed by the above method. Then; I and I ′

are equivalent in the following sense: Any feasible solution for I ′ can be transformed
into a feasible solution for I of the same cost and vice versa. This transformation
can be accomplished in polynomial time.

Proof. Let S ′ be a valid solution for instance I ′ of S-DARP where S ′ is an augmenting
set of arcs. Let C′ be a ≺-respecting Eulerian cycle in G′[A′ + S ′] with start o′.
We 3rst construct an auxiliary set M of arcs by traversing C′ and replacing all chains

of arcs from S ′ with a single arc from the start vertex of the chain to its end vertex.
Notice that all endpoints of arcs in M are contained in V ′ \ V . We now construct a
solution S by replacing each arc (u(±); v(±)) by (u; v). It is easy to see that S is in
fact a valid solution for I of cost equal to that of S ′.
Conversely, let S be a feasible solution for I . We can construct a solution S ′ for I ′

with equal cost by adding for each arc (u; v) in S the arc (u(±); v(±)) to S ′.
The time bound is obvious from the construction.

It follows from the construction that if G[E] is a tree then G′[E′] is also a tree. Thus,
the last lemma implies that approximation results for S-DARP on trees can be applied
directly to PENALTY-S-DARP on trees. Similarly, approximation results for general graphs
carry over immediately. Hence, we obtain the following result:

Corollary 24. The problem PENALTY-S-DARP can be approximated on trees with per-
formance 5=3 and with performance 9=4 on general graphs.

106 D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107

Table 1
Complexity and approximation results for DARP and related problems

Graph class S-DARP DARP PENALTY-S-DARP

Paths Polynomial time Polynomial time NP-hard
solvable solvable [5] (Theorem 25)
(Theorem 13)

Approximable
within 5=3.
(Corollary 24)

Trees NP-hard, even on NP-hard, even on NP-hard
caterpillars caterpillars
(Theorem 21) (Theorem 21)
Approximable Approximable Approximable
within 5=3 within 5=4 [11] within 5=3.
(Theorem 20) (Corollary 24)

General Graphs NP-hard NP-hard [12] NP-hard
Approximable Approximable Approximable
within 9=4 within 9=5 [12] within 9=4
(Corollary 19) (Corollary 24)

However, transforming an instance of PENALTY-S-DARP where G[E] is a path yields
an instance of S-DARP where G′[E′] is a caterpillar graph. This seems unfortunate, since
we know from Theorem 21 that S-DARP is NP-hard to solve on caterpillars. Is there a
better transformation? More general, is PENALTY-S-DARP on paths still polynomial time
solvable?
The caterpillar constructed in the proof of Theorem 21 has the property that jobs

have sources and targets only in the feet of the caterpillar. Actually every instance
of S-DARP on caterpillars with these properties can be transformed into an equivalent
instance of PENALTY-S-DARP on a path: Let f be a foot and v be its unique adjacent
vertex on the backbone. We replace all arcs from A which are incident with f by
corresponding arcs with source or target v. We then remove foot f. The start- and
stop-penalty on v are set to the length c(f; v) of the hair between v and the foot f. It
follows by arguments similar to those given in Lemma 23 that the constructed instance
of PENALTY-S-DARP on the path (which corresponds to the former backbone) is in fact
an equivalent instance to the instance of S-DARP on the caterpillar. Thus, we obtain the
following result which contrasts with the polynomial solvability of S-DARP on paths:

Theorem 25. PENALTY-S-DARP on paths is NP-hard to solve.

10. Concluding remarks

We have presented a natural extension of a “Dial-a-Ride-Problem”, which was orig-
inally motivated by the performance analysis of a large distribution center of Herlitz

D. Hauptmeier et al. / Discrete Applied Mathematics 113 (2001) 87–107 107

AG, Berlin [2]. We have shown that even in the presence of source-order constraints
for the transportation jobs the problem can be solved in polynomial time on paths
which generalizes the result of [5]. On trees, however, the problem is NP-hard.
Table 1 gives an overview on the results for S-DARP obtained in this paper and

the known results from literature for DARP. The last column addresses the problem
PENALTY-S-DARP which is the extension of S-DARP with start- and stop-penalties dis-
cussed in Section 9.

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Networks Flows, Prentice-Hall, Englewood CliPs, NJ, 1993.
[2] N. Ascheuer, M. GrUotschel, S.O. Krumke, J. Rambau, Combinatorial online optimization, Proceedings

of the International Conference of Operations Research (OR’98), Springer, Berlin, 1998, pp. 21–37.
[3] N. Ascheuer, S.O. Krumke, J. Rambau, Competitive scheduling of elevators, preprint SC 98-34,

Konrad-Zuse-Zentrum fUur Informationstechnik Berlin, November 1998.
[4] N. Ascheuer, S.O. Krumke, J. Rambau, Online dial-a-ride problems: minimizing the completion time,

Proceedings of the 17th International Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science, Vol. 1770, Springer, Berlin, 2000, pp. 639–650.

[5] M.J. Atallah, S.R. Kosaraju, EQcient solutions to some transportation problems with applications to
minimizing robot arm travel, SIAM J. Comput. 17 (5) (1988) 849–869.

[6] M. Charikar, B. Raghavachari, The 3nite capacity dial-a-ride problem, Proceedings of the 39th Annual
IEEE Symposium on the Foundations of Computer Science, 1998.

[7] N. Christo3des, Worst-case analysis of a new heuristic for the traveling salesman problem, Technical
Report, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA, 1976.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[9] M. Dror, H. Stern, P. Trudeau, Postman tour on a graph with precedence relation on the arcs, Networks
17 (1987) 283–294.

[10] E. Feuerstein, L. Stougie, On-line single server dial-a-ride problems, Theoret. Comput. Sci. (2001), to
appear.

[11] G.N. Frederickson, D.J. Guan, Nonpreemptive ensemble motion planning on a tree, J. Algorithms 15
(1) (1993) 29–60.

[12] G.N. Frederickson, M.S. Hecht, C.E. Kim, Approximation algorithms for some routing problems, SIAM
J. Comput. 7 (2) (1978) 178–193.

[13] M.R. Garey, D.S. Johnson, Computers and Intractability (A guide to the theory of NP-completeness),
W.H. Freeman and Company, New York, 1979.

[14] D.J. Guan, Routing a vehicle of capacity greater than one, Discrete Appl. Math. 81 (1) (1998) 41–57.
[15] D. Harel, R.E. Tarjan, Fast algorithms for 3nding nearest common ancestors, SIAM J. Comput. 13 (2)

(1984) 338–355.
[16] B. Schieber, U. Vishkin, On 3nding lowest common ancestors: simpli3cation and parallelization, SIAM

J. Comput. 17 (6) (1988) 1253–1262.
[17] R.E. Tarjan, Finding optimum branchings, Networks 7 (1977) 25–35.

