1,095 research outputs found

    General pairing interactions and pair truncation approximations for fermions in a single-j shell

    Full text link
    We investigate Hamiltonians with attractive interactions between pairs of fermions coupled to angular momentum J. We show that pairs with spin J are reasonable building blocks for the low-lying states. For systems with only a J = Jmax pairing interaction, eigenvalues are found to be approximately integers for a large array of states, in particular for those with total angular momenta I le 2j. For I=0 eigenstates of four fermions in a single-j shell we show that there is only one non-zero eigenvalue. We address these observations using the nucleon pair approximation of the shell model and relate our results with a number of currently interesting problems.Comment: a latex text file and 2 figures, to be publishe

    Many-body Systems Interacting via a Two-body Random Ensemble (I): Angular Momentum distribution in the ground states

    Full text link
    In this paper, we discuss the angular momentum distribution in the ground states of many-body systems interacting via a two-body random ensemble. Beginning with a few simple examples, a simple approach to predict P(I)'s, angular momenta I ground state (g.s.) probabilities, of a few solvable cases, such as fermions in a small single-j shell and d boson systems, is given. This method is generalized to predict P(I)'s of more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, d-boson, sd-boson or sdg-boson systems, etc. By this method we are able to tell which interactions are essential to produce a sizable P(I) in a many-body system. The g.s. probability of maximum angular momentum ImaxI_{max} is discussed. An argument on the microscopic foundation of our approach, and certain matrix elements which are useful to understand the observed regularities, are also given or addressed in detail. The low seniority chain of 0 g.s. by using the same set of two-body interactions is confirmed but it is noted that contribution to the total 0 g.s. probability beyond this chain may be more important for even fermions in a single-j shell. Preliminary results by taking a displaced two-body random ensemble are presented for the I g.s. probabilities.Comment: 39 pages and 8 figure

    Simultaneous projection and detection system of four different frequencies for microwave imaging reflectometry in Large Helical Device

    Get PDF
    A simultaneous projection/detection system of four different frequencies for microwave imaging reflectometry (MIR) was developed for three-dimensional observation of electron density fluctuations in the Large Helical Device (LHD). The microwave with four frequency components at 60.410, 61.808, 63.008, and 64.610 GHz is projected in a continuous-wave mode to illuminate the target LHD plasma. A two-dimensional horn-antenna mixer array (2D HMA) receives the reflected wave from the plasma as well as the wave from the local oscillator operating at 55.800 GHz. The first intermediate frequency (IF) signals at 4.610, 6.008, 7.208, and 8.810 GHz were confirmed to be obtained by downconversion of these microwaves using the 2D HMA. Each of these first IF components is filtered from each other and downconverted again for the superheterodyne detection. It was confirmed that both the amplitudes and the phases of the detected signals reflect the fluctuations in LHD plasmas

    Anharmonic double-phonon excitations in the interacting boson model

    Get PDF
    Double-γ\gamma vibrations in deformed nuclei are analyzed in the context of the interacting boson model. A simple extension of the original version of the model towards higher-order interactions is required to explain the observed anharmonicities of nuclear vibrations. The influence of three- and four-body interactions on the moments of inertia of ground- and γ\gamma-bands, and on the relative position of single-γ\gamma and double-γ\gamma bands is studied in detail. As an example of a realistic calculation, spectra and transitions of the highly γ\gamma-anharmonic nuclei 164^{164}Dy, 166^{166}Er, and 168^{168}Er are interpreted in this approach.Comment: 38 pages, TeX (ReVTeX). 15 ps figures. Submitted to Phys. Rev.

    Why is the bandwidth of sodium observed to be narrower in photoemission experiments?

    Full text link
    The experimentally predicted narrowing in the bandwidth of sodium is interpreted in terms of the non-local self-energy effect on quasi-particle energies of the electron liquid. The calculated self-energy correction is a monotonically increasing function of the wavenumber variable. The usual analysis of photo-emission experiments assumes the final state energies on the nearly-free-electron-like model and hence it incorrectly ascribes the non-local self-energy correction to the final state energies to the occupied state energies, thus leading to a seeming narrowing in the bandwidth.Comment: 9 page

    Developmet of 3D microwave imaging reflectometry in LHD

    Get PDF
    Three-dimensional (3D) microwave imaging reflectometry has been developed in the large helical device to visualize fluctuating reflection surface which is caused by the density fluctuations. The plasma is illuminated by the probe wave with four frequencies, which correspond to four radial positions. The imaging optics makes the image of cut-off surface onto the 2D (7 × 7 channels) horn antenna mixer arrays. Multi-channel receivers have been also developed using micro-strip-line technology to handle many channels at reasonable cost. This system is first applied to observe the edge harmonic oscillation (EHO), which is an MHD mode with many harmonics that appears in the edge plasma. A narrow structure along field lines is observed during EHO
    corecore