1,089 research outputs found

    Using a neural network approach for muon reconstruction and triggering

    Full text link
    The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to take precise decisions in a few nano-seconds. We present a study which used an artificial neural network triggering algorithm and compared it to the performance of a dedicated electronic muon triggering system. Relatively simple architecture was used to solve a complicated inverse problem. A comparison with a realistic example of the ATLAS first level trigger simulation was in favour of the neural network. A similar architecture trained after the simulation of the electronics first trigger stage showed a further background rejection.Comment: A talk given at ACAT03, KEK, Japan, November 2003. Submitted to Nuclear Instruments and Methods in Physics Research, Section

    Twenty Years of Timing SS433

    Get PDF
    We present observations of the optical ``moving lines'' in spectra of the Galactic relativistic jet source SS433 spread over a twenty year baseline from 1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession of the jet axis in SS433, and we present a new determination of the precession parameters based on these data. We investigate the amplitude and nature of time- and phase-dependent deviations from the kinematic model for the jet precession, including an upper limit on any precessional period derivative of P˙<5×10−5\dot P < 5 \times 10^{-5}. We also dicuss the implications of these results for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules

    Get PDF
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/

    Bosonization for Wigner-Jordan-like Transformation : Backscattering and Umklapp-processes on Fictitious Lattice

    Full text link
    We analyze the asymptotic behavior of the exponential form in the fermionic density operators as the function of ruling parameter Q. In the particular case Q=\pi this exponential associates with the Wigner-Jordan transformation for XY spin chain model. We compare the bosonization approach and the evaluation via the Toeplitz determinant. The use of Szego-Kac theorem suggests that at Q>\pi/3 the divergent series for intrinsic logarithm provides a bosonized solution and faster decaying one, found as the logarithm's value on another sheet of the complex plane. The second solution is revealed as umklapp-process on the fictitious lattice while originates from backscattering terms in bosonized density. Our finding preserves in a wide range of fermion filling ratios.Comment: 8 pages, REVTEX, 3 eps figures, accepted to Phys.Rev.

    From the Chern-Simons theory for the fractional quantum Hall effect to the Luttinger model of its edges

    Full text link
    The chiral Luttinger model for the edges of the fractional quantum Hall effect is obtained as the low energy limit of the Chern-Simons theory for the two dimensional system. In particular we recover the Kac-Moody algebra for the creation and annihilation operators of the edge density waves and the bosonization formula for the electronic operator at the edge.Comment: 4 pages, LaTeX, 1 Postscript figure include

    Ergodic properties of quasi-Markovian generalized Langevin equations with configuration dependent noise and non-conservative force

    Full text link
    We discuss the ergodic properties of quasi-Markovian stochastic differential equations, providing general conditions that ensure existence and uniqueness of a smooth invariant distribution and exponential convergence of the evolution operator in suitably weighted L∞L^{\infty} spaces, which implies the validity of central limit theorem for the respective solution processes. The main new result is an ergodicity condition for the generalized Langevin equation with configuration-dependent noise and (non-)conservative force

    The Self-Administered Witness Interview Tool (SAW-IT): Enhancing witness recall of workplace incidents

    Get PDF
    Given the often crucial role of witness evidence in Occupational Health and Safety investigation, statements should be obtained as soon as possible after an incident using best practice methods. The present research systematically tested the efficacy of a novel Self-Administered Witness Interview Tool (SAW-IT); an adapted version of the Self-Administered Interview (SAI©) designed to elicit comprehensive information from witnesses to industrial events. The present study also examined whether completing the SAW-IT mitigated the effect of schematic processing on witness recall. Results indicate that the SAW-IT elicited significantly more correct details, as well as more precise information than a traditional incident report form. Neither the traditional report from, nor the SAW-IT mitigated against biasing effects of contextual information about a worker’s safety history, confirming that witnesses should be shielded from extraneous post-event information prior to reporting. Importantly, these results demonstrate that the SAW-IT can enhance the quality of witness reports

    Large scale stochastic inventory routing problems with split delivery and service level constraints

    Get PDF
    A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer’s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC

    Interacting Electrons on a Fluctuating String

    Full text link
    We consider the problem of interacting electrons constrained to move on a fluctuating one-dimensional string. An effective low-energy theory for the electrons is derived by integrating out the string degrees of freedom to lowest order in the inverse of the string tension and mass density, which are assumed to be large. We obtain expressions for the tunneling density of states, the spectral function and the optical conductivity of the system. Possible connections with the phenomenology of the cuprate high temperature superconductors are discussed.Comment: 14 pages, 1 figur
    • 

    corecore