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Abstract A stochastic inventory routing problem (SIRP) is typically the combination of sto-
chastic inventory control problems and NP-hard vehicle routing problems, which determines
delivery volumes to the customers that the depot serves in each period, and vehicle routes
to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split
delivery (SIRPSD) where a customer’s delivery in each period can be split and satisfied by
multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria
of the total inventory and transportation costs, and the service levels of customers. The total
inventory and transportation cost is considered as the objective of the problem to minimize,
while the service levels of the warehouses and the customers are satisfied by some im-
posed constraints and can be adjusted according to practical requests. In order to tackle the
SIRPSD with notorious computational complexity, we first propose an approximate model,
which significantly reduces the number of decision variables compared to its corresponding
exact model. We then develop a hybrid approach that combines the linearization of nonlin-
ear constraints, the decomposition of the model into sub-models with Lagrangian relaxation,
and a partial linearization approach for a sub model. A near optimal solution of the model
found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly
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generated instances of the problem with up to 200 customers and 5 periods and about 400
thousands decision variables where half of them are integer are examined by numerical ex-
periments. Our approach can obtain high quality near optimal solutions within a reasonable
amount of computation time on an ordinary PC.

Keywords Inventory routing problem · Stochastic demand · Split delivery · Vehicle
routing problem · Lagrangian relaxation · Partial linearization

Abbreviations

Indices
i, j = 0,1, . . . ,N Index of customer or depot, where i, j = 1, . . . ,N are customer indexes,

and 0 is the depot index,
t = 1, . . . , T Period index,

Parameters
C Vehicle capacity in volume,
cij Variable shipping cost per unit of product along arc (i, j) where

cij = cji and triangle inequality holds (cij + cjk ≥ cik),
cb
i0 Traveling cost of an empty vehicle from customer i back directly to the

depot,
ft Fixed vehicle cost per tour in period t ,
hit Holding cost per unit product for customer i in period t ,
Ii0 Initial inventory level at the beginning of period 1,
Iit Inventory level of customer i at the end of period t ,
I+
it = max(0, Iit ) On-hand inventory of customer i at the end of period t , which excludes

the stockout of Iit < 0,
Vi The inventory capacity for customer i’s warehouse,
αit Service level for customer i’s demand in period t (probability that

customer i’s demand is satisfied in period t),
βit The service level of customer i’s warehouse in period t (probability that

customer i’s warehouse is not overfilled in period t),
ζit Stochastic demand of customer i in period t ,
ζi,(1,t) = ∑t

s=1 ζis , cumulative stochastic demand from period 1 to t ,
Fi,(1,t)(.) Accumulative probability distribution function of stochastic demand

ζi,(1,t),

Decision variables
dit Delivery volume to customer i in period t ,
qijt Demand quantity transported on directed arc (i, j) in period t ,
xijt Number of the times that customer j is visited directly after customer i

in period t .

1 Introduction

The inventory routing problem (IRP) is frequently found in a vendor managed inven-
tory (VMI) system with one central vendor (depot) and multiple geographically dispersed
customers. The depot operates vehicles with limited capacity for distributing products to
its customers. The IRP aims to determine the delivery volume for every customer and
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a set of feasible vehicle routes delivering the volumes in each period so that a system-
wide total inventory and transportation cost is minimized. Such problems are common in
VMI systems that have been adopted in many firms like P&G, Dell, HP, Barilla, Wal-
Mart (Yu et al., 2009a, 2009b) and Air Products for gas distribution (Adelman 2004;
Bell et al. 1983).

This paper focuses on a multiple-period stochastic inventory routing problem with split
delivery (SIRPSD) where the depot has a fleet of homogeneous capacitated vehicles, and
customers’ demands are stochastic in each period (e.g. every day). The primary objective is
the minimization of the total inventory and transportation cost. However, due to the stochas-
tic nature of customer demands, the other criteria about service levels have to be satisfied
by limiting the stockout probability at each customer and the probability of overfilling the
stock of each customer. To consider these criteria simultaneously, various methods may be
used; such as integrating multiple criteria in one objective function by using data develop-
ment analysis (DEA) and analytic hierarchy process (AHP) (Koksalan and Tuncer 2009;
Li and Ma 2008; Peng et al. 2008; Tchangani 2009). Alternatively, one can choose one cri-
terion as the primary objective function to minimize, while the other secondary criteria are
left as model constraints and analyzed later by sensitivity analysis. Motivated by the previ-
ous work of Chen (2007) on production planning, this paper selects the alternative method.
Moreover, this research takes into consideration split delivery that allows the delivery vol-
ume to a customer in a period to be split and served by multiple vehicle routes. This is
common in practice.

SIRP is a class of notoriously difficult problems and related literature can be classified
in three categories: those who study a single period problem, those who study an infinite-
period problem, and those who study a finite multi-period problem. A single period problem
is firstly studied in Federgruen and Zipkin (1984) which considers the corresponding inven-
tory control problem as a newsvendor problem and the corresponding routing problem as
a TSP. Dror and Ball (1987) develop a heuristic technique to reduce a long-run problem to
a single period problem. The infinite-period SIRP is mainly stemmed from Kleywegt et al.
(2002, 2004) and Adelman (2004). They formulate the problem as a Markov decision prob-
lem (MDP) over an infinite horizon where dynamic programming can be applied to solve
the problem. To make the MDP solvable, they assume that the state of the system can be
observed at the beginning of each period so that an action can be taken, and that customer
demands are observed after any action has been made. The state of the system is described
through the inventory levels of all the customers. They aim to determine a policy for the
MDP to minimize the expected total inventory and transportation cost plus possible revenue
gained for each delivery over an infinite horizon. Further extensions of those researches can
be found in Hvattum et al. (2009), and Lejeune and Ruszczynski (2007).

For multi-period SIRP, Trudeau and Dror (1992) and Dror and Trudeau (1996) consider
stochastic demands over a rolling horizon. Both papers solve a slightly different model with
a specific application to the distribution of oil and gas. In these models, a product has to
be delivered from one depot to many customers whose demand is different in each pe-
riod. Trudeau and Dror (1992) develop heuristics to solve their problems by minimizing the
long-run average transportation costs, and Dror and Trudeau (1996) focus on maximizing
operational efficiency (average number of units delivered in one hour of operation) and min-
imizing the average number of stockout in each period. Similar literature can be found in
Jaillet et al. (2002) and Schwarz et al. (2006). The main differences between the above cited
papers and our paper lie in:

(1) We consider split delivery in a stochastic inventory routing problem. That is, one cus-
tomer’s delivery volume can be satisfied by multiple vehicle routes. Split delivery is
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extensively studied in pure VRP literature. Recently, Archetti et al. (2006, 2008) have
proposed optimization-based heuristics and meta-heuristic approaches able to find very
good feasible solutions of large SDVRP instances (up to 200 customers). A column
generation approach improving the best lower and upper bounds for the instances is
proposed by Belenguer et al. (2000). A method to find good solutions for instances with
large average demand has been proposed by Jin et al. (2007). Chen et al. (2007) develop
a heuristic algorithm combining a mixed integer program and a record-to-record travel
algorithm that can produce very high-quality solutions for 21 new instances with 8 to
288 customers. However, split delivery is rarely considered in IRP, especially in SIRP.

(2) Besides considering the total cost, we consider the criteria of service levels for customer
demands and warehouses, which are rarely treated in SIRP related literature.

(3) We consider stochastic demands of any probability distribution with the help of model
simplification and a nonlinear objective function. The demands of each customer in
multiple periods can be correlated.

This paper is a stochastic version of our previous work Yu et al. (2008) on a deterministic
IRP, but they have distinct differences in modeling and solution approaches: (1) the objective
function is nonlinear in this paper but linear in Yu et al. (2008). (2) the constraints of the
two models are different; some constraints on the service levels are considered in this paper
and they are nonlinear. Therefore, a new approach has to be developed to deal with those
stochastic and nonlinear components. We borrow some ideas about how to construct a near
optimal solution of the SIRPSD from its model’s solution from our previous paper, but the
construction approach has to be adapted to the new features of the SIRPSD and its model.

The contributions of the paper include: (1) study a new SIRPSD where the service levels
of customers’ demands and warehouses are considered, (2) propose a hybrid approach to
find near-optimal solutions of the SIRPSD for large instances (i.e., with 200 customers).
In order to efficiently solve such kind of large instances of the problem, we introduced the
following approaches.

Firstly, we propose an approximate stochastic IRP model instead of an exact stochastic
model. The approximate model allows us not to dedicate decision variables to individual
vehicles since the vehicles are homogeneous. This can significantly reduce the number of
decision variables. For example, if the vehicle fleet size is 20, our modeling only requires
1/20 vehicle related decision variables compared with an exact model where decision vari-
ables are dedicated to individual vehicles. Although the solution of such an approximate
model might not be a feasible solution of the studied SIRPSD, the infeasibility can be ef-
fectively repaired without affecting solution quality. Moreover the optimal solution of the
approximate model provides a lower bound of the optimal cost of our studied SIRPSD.

Secondly, we transform the approximate stochastic model into a simplified deterministic
model which is easier to solve. Meanwhile some constraints are eliminated and the domains
of some decision variables are reduced without losing optimal solutions (see Sect. 2.2).

Thirdly, we develop a Lagrangian relaxation approach to decompose the model into sub-
models, which are an inventory problem and a vehicle routing problem, respectively. The
inventory problem is nonlinear and is solved by a partial linearization approach. The routing
problem is further decomposed into many smaller subproblems which can be quickly solved.

Finally, assignment problems are introduced to construct a feasible solution of the
SIRPSD from its model’s solution. Some local search improvements are also proposed to
improve the quality of the found feasible solution of the SIRPSD.

Besides, our approach can provide a tight lower bound of the optimal cost of the studied
SIRPSD for evaluating the quality of a feasible solution of the SIRPSD. The introduced La-
grangian relaxation approach can provide a lower bound of the approximate model, and then
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a lower bound of the studied SIRPSD. The quality of the feasible solution of the SIRPSD
can therefore be evaluated by the gap between the cost of the found solution of the SIRPSD
and the lower bound given by the Lagrangian relaxation approach.

The rest of this paper is organized as follows. In Sect. 2, the approximate model is pro-
posed and simplified. The near optimal solution of the approximate model is found in Sect. 3,
based on which a near optimal solution of the studied SIRPSD is found in Sect. 4 and 5. In
Sect. 6, the problem with a special probability distribution of customer demand is analyzed
and the performance of our proposed approach is evaluated. Section 7 concludes the paper.

2 Approximate generic model and its simplification

The studied multi-period SIRPSD consists of a central depot, multiple customers, and a fleet
of vehicles, where

(1) Each customer’s demand is stochastic in each period, and the customers require the
depot to satisfy their demands with a certain service level by limiting the possibility
of stockout within a given value. The demand in each period is stochastic and obeys a
given probability distribution. The exact demand of each customer is therefore unknown
before its realization. Unsatisfied customer demand in each period can be backlogged
but be limited with service level constraints.

(2) The depot is responsible for delivering a product to its customers to satisfy their require-
ments on demand and service level by a fleet of homogeneous and capacitated vehicles.
Note that assuming homogeneous vehicles is realistic in practice and common in the
literature (Fumero and Vercellis 1999; Hvattum et al. 2009; Yu et al. 2008). The fleet
size of vehicles and the number of tours of a vehicle performed in each period are not
constrained to minimize the total cost, but the decision results of the proposed model of
the problem.

(3) A multi-period horizon is considered. Periodically, the depot has to make a plan for a
given number of future periods about when and how much every customer should be
replenished. Because the demands of each customer are stochastic but its delivery vol-
umes for the given periods over the time horizon have to be determined at the beginning
of the first period (which is also the current period), the customer’s warehouse may be
overfilled in the next period if the demand in the current period is low but the delivery
volume for the next period is high. We therefore have to consider the service levels of
the warehouses in order to model the limited overfilling possibility.

(4) Split delivery is allowed. In practice, if a customer’s demand is large, the delivery vol-
ume of the customer is most likely to be served by multiple vehicle routes.

(5) The objective is to minimize the total inventory and transportation cost over a given
time horizon subject to given service level constraints. The inventory cost depends on
the inventory level of each customer at the end of each period. The transportation cost
includes not only fixed costs such as vehicle depreciation, and drivers’ rewards, but
also variable costs that depend on transported quantity and traveled distance of a vehi-
cle. This transportation cost structure, adopted by Fumero and Vercellis (1999), can not
only model purely distance proportional cost components (such as fuel costs) in clas-
sical VRP but also model the transportation cost in the third party logistics where the
transportation cost charged is usually proportional to the shipped volume.

The related notations are given as follows.
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2.1 Approximate model

The approximate model for the SIRPSD (denoted by P) can therefore be formulated as:
Model P:

Z = min
T∑

t=1

E

(
N∑

i=1

hit I
+
it

)

+
T∑

t=1

N∑

i=0,i �=j

N∑

j=0

cij qij t +
T∑

t=1

N∑

i=1

ftxi0t +
T∑

t=1

N∑

i=1

cb
i0xi0t (1)

Subject to

Iit = Ii,0 +
t∑

s=1

dis −
t∑

s=1

ζis, i = 1, . . . ,N, t = 1, . . . , T (2)

Prob(Iit ≥ 0) ≥ αit , i = 1, . . . ,N, t = 1, . . . , T (3)

Prob(Ii,t−1 + dit ≤ Vi) ≥ βit , i = 1, . . . ,N, t = 2, . . . , T (4)

Ii,0 + di1 ≤ Vi, i = 1, . . . ,N (5)

N∑

j=0,j �=i

xij t =
N∑

j=0,j �=i

xjit , i = 0, . . . ,N, t = 1, . . . , T (6)

N∑

j=0,j �=i

qjit −
N∑

j=0,j �=i

qij t = dit , i = 1, . . . ,N, t = 1, . . . , T (7)

N∑

i=1

q0it =
N∑

i=1

dit , t = 1, . . . , T (8)

qijt ≤ C · xijt , i = 0, . . . ,N, j = 1, . . . ,N, i �= j, t = 1, . . . , T (9)

dit ≥ 0, i = 1, . . . ,N,

qij t ≥ 0, i = 0, . . . ,N, j = 0, . . . ,N, j �= i, t = 1, . . . , T (10)

xijt ≥ 0 and integer i, j = 0, . . . ,N, i �= j, t = 1, . . . , T (11)

Equation (1) gives the total cost including the expected inventory cost for all customers
(
∑T

t=1 E(
∑N

i=1 hit I
+
it )), the variable transportation cost (

∑T

t=1

∑N

j=0,j �=i

∑N

i=0 cij qij t ), the

fixed transportation cost (
∑T

t=1

∑N

i=1 ftxi0t ) and the transportation cost of empty vehicles
back to the depot from customer i, (

∑T

t=1

∑N

i=1 cb
i0xi0t ). In

∑T

t=1

∑N

i=1 ftxi0t , the number of
the fixed costs (ft ) counted in

∑N

i=1 ftxi0t equals the number of tours (
∑N

i=1 xi0t ) in period t .
Equation (1) is a stochastic version of the cost structure in Yu et al. (2008) and Fumero
and Vercellis (1999). Constraints (2) are the inventory balance constraints for individual
customers. Constraints (3) ensure that the probability for customer i’s demand satisfied in
period t is no less than αit for period t = 1, . . . , T , which represents the service levels of the
depot to satisfy customer demand in each period. Constraints (4) describe the service levels
related to the customers’ warehouses and guarantee that the probability of customer i’s
warehouse capacity being able to accommodate its maximum inventory level is no less than
βit at period t = 2, . . . , T . Constraints (5) ensure that every customer’s warehouse inventory
capacity should be no less than its maximum inventory level in period 1. Constraints (6)
ensure that the number of vehicles leaving from a customer or the depot is equal to that
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of arriving vehicles. Constraints (7) are the product flow conservation equations, ensuring
flow balance at each customer and eliminating possible subtours. Constraints (8) assure the
total volume shipped from the depot equals the total delivery volume of all the customers
in each period. Constraints (9) model the vehicle capacity and logical relationship between
qijt and xijt .

Model P defines some necessary conditions of a feasible solution of the SIRPSD and
therefore its optimal solution provides a lower bound of the optimal cost of the SIRPSD.
However, in the decision variables qijt and xijt , no subscripts are dedicated to individual
vehicles, and feasible qijt and xijt of Model P may be infeasible for the SIRPSD (Yu et al.
2007). qijt and xijt have to be split and assigned to individual vehicles in order to make
them feasible for the studied SIRPSD. In the following, we firstly simplify the model (see
Sect. 2.2), and find its near optimal solutions (see Sect. 3). How to construct a near optimal
solution of the studied SIRPSD will be given later in Sect. 4.

2.2 Model Simplification

Model P can be simplified from three aspects (1) transforming the stochastic terms in
Model P (i.e., (1), (2), (3) and (4)) into deterministic ones, (2) adding some valid constraints
to reduce the feasible domains of the decision variables, (3) simplifying some decision vari-
ables.

Transformation of the stochastic terms The stochastic terms are in (1), (2), (3) and (4). For
the objective function (1), by substituting (2) into the objective function (1), E(

∑N

i=1 hit I
+
it )

can be reformulated as
∑N

i=1 hitE(I+
it ) = ∑N

i=1 hit

∫ Ii,0+∑t
s=1 dis

0 (Ii,0 + ∑t

s=1 dis − x)

dFi,(1,t)(x). Considering Fi,(1,t)(0) = 0 in practice, we have
∑N

i=1 hitE(I+
it ) =

∑N

i=1 hit (Ii,0 + ∑t

s=1 dis − x)Fi,(1,t)(x)|Ii,0+∑t
s=1 dis

0 + ∑N

i=1 hit

∫ Ii,0+∑t
s=1 dis

0 Fi,(1,t)(x)dx =
∑N

i=1 hit

∫ Ii,0+∑t
s=1 dis

0 Fi,(1,t)(x)dx.
For constraints (3), substituting (2) into constraints (3), we have Prob(Iit ≥ 0) =

Prob(Ii,0 + ∑t

s=1 dis ≥ ∑t

s=1 ζis) = ∫ Ii,0+∑t
s=1 dis

0 dFi,(1,t)(x) = Fi,(1,t)(Ii,0 + ∑t

s=1 dis) −
Fi,(1,t)(0) = Fi,(1,t)(Ii,0 + ∑t

s=1 dis) because Fi,(1,t)(0) = 0 for all practical purposes. Conse-
quently, constraint (3) can be reformulated as Fi,(1,t)(Ii,0 + ∑t

s=1 dis) ≥ αit , or equivalently
as

t∑

s=1

dis ≥ F−1
i,(1,t)(αit ) − Ii,0, i = 1, . . . ,N, t = 1, . . . , T (3′)

For constraints (4), substituting (2) into constraints (4), Prob(Ii,t−1 + dit ≤ Vi) =
Prob(Ii,0 + ∑t−1

s=1 dis − ∑t−1
s=1 ζis + dit ≤ Vi) = Prob(Ii,0 + ∑t

s=1 dis − Vi ≤ ∑t−1
s=1 ζis) =

∫ +∞
Ii,0+∑t

s=1 dis−Vi
dFi,(1,t−1)(x) = 1 − Fi,(1,t−1)(Ii,0 + ∑t

s=1 dis − Vi). Thus constraints (4) can

be formulated as Fi,(1,t−1)(Ii,0 + ∑t

s=1 dis − Vi) ≤ 1 − βit , or equivalently as:

t∑

s=1

dis ≤ Vi + F−1
i,(1,t−1)(1 − βit ) − Ii,0, i = 1, . . . ,N, t = 2, . . . , T (4′)

As the result of the above transformation, constraints (2) are removed simultaneously.
Once F−1

i,(1,t−1)(·) is known, constraints (3) and (4) can then be replaced with the linear
constraints of (3′) and (4′).



Ann Oper Res

Addition of valid constraints Without proof, the optimal solution of Model P must satisfy
constraints (12) below:

qi0t = 0, i = 1, . . . ,N, t = 1, . . . , T (12)

The constraints imply that each vehicle must be empty when it returns to the depot.

Simplification of decision variables With Theorem 1 below, xijt for i, j = 1, . . . ,N as
integer can be simplified as binary variables, xijt ∈ {0,1}.

Theorem 1 If Model P is feasible, and cij i, j = 1, . . . ,N satisfy the triangle inequality,
then the model has an optimal solution where no two routes with the same direction have
more than one common customer, i.e., xijt ∈ {0,1} for i, j = 1, . . . ,N .

Here Theorem 1, taken from Yu et al. (2008), is given directly without proof. Theorem 1
is proved by Dror and Trudeau (1990) in case of VRP with split delivery.

Therefore constraints (11) can be replaced with

xijt ∈ {0,1}, j �= i, xi0t , x0j t integer i, j = 1, . . . ,N (11′)

According to the above analysis, Model P can be simplified as the following equivalent
model, (denoted by P′).

Model P′:

minZ =
T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dis

0

(

Ii,0 +
t∑

s=1

dis − x

)

dFi,(1,t)(x) +
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

cij qij t

+
T∑

t=1

N∑

i=1

ftxi0t +
T∑

t=1

N∑

i=1

cb
i0xi0t (1′)

Subject to constraints (5)–(10), (3′), (4′), (11′), and (12).

3 Solution methodology of Model P′

Model P′ is obviously NP-hard as its simplified single period problem without considering
inventory is SDVRP that is NP-hard. This motivates us to seek for approximate approaches
to solve the problem and Lagrangian relaxation (LR) approach is selected since it can de-
compose our model into easily solvable sub-problems.

In this section the Lagrangian relaxation (LR) approach to find a near optimal solution
of Model P′ will be presented. The solution will then be used to construct a feasible near
optimal solution of the SIRPSD using a heuristic approach. The optimal dual value obtained
by the Lagrangian relaxation approach provides a lower bound of the optimal cost of the
studied SIRPSD for evaluating the quality of the feasible solution of SIRPSD.

3.1 Lagrangian relaxation

In Model P′, the constraints that complicate the resolution of this problem are constraints (9)
which couple qijt and xijt . They are relaxed by introducing non-negative Lagrange multi-
pliers λ = (λij t )(N+1)×N×T with a penalty term added to the objective function (1′). The
corresponding Lagrangian relaxed problem (denoted by RP) can be formulated as:
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Model RP:

Zλ(d, q, x) =
T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dis

0

(

Ii,0 +
t∑

s=1

dis − x

)

dFi,(1,t)(x)

+
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

cij qij t +
T∑

t=1

N∑

i=1

ftxi0t +
T∑

t=1

N∑

i=1

cb
i0xi0t

+
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

λijt (qij t − C · xijt )

=
T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dis

0

(

Ii,0 +
t∑

s=1

dis − x

)

dFi,(1,t)(x)

+
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

(λij t + cij )qij t +
T∑

t=1

N∑

i=1

(cb
i0 + ft )xi0t

− C

T∑

t=1

N∑

j=1,j �=i

N∑

i=0

λijtxij t (13)

subject to λ ≥ 0, (3′), (4′), (5)–(8), (10), (11′), and (12).
The problem can therefore be decomposed into the following two independent subprob-

lems while global minimization is reserved.
The inventory subproblem (denoted by INV) determining the d , q values can be formu-

lated as:

Z1
λ(d, q) = min

T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dis

0

(

Ii,0 +
t∑

s=1

dis − x

)

dFi,(1,t)(x)

+
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

(λij t + cij )qij t (14)

subject to constraints (3′), (4′), (5), (7), (8), (10) and (12).
The routing subproblem (denoted by ROU) determining the x values can be formulated

as:

Z2
λ(x) = min

T∑

t=1

N∑

i=1

(cb
i0 + ft )xi0t − C

T∑

t=1

N∑

j=1,j �=i

N∑

i=0

λijtxij t (15)

subject to (6) and (11′).
For ROU, it can be further decomposed into T independent subproblems, one for each

period, given by:

Zλ(x(t)) = min
N∑

i=1

(cb
i0 + ft )xi0t − C

N∑

j=1,j �=i

N∑

i=0

λijtxij t (16)
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subject to constraints (11′) and

N∑

j=0,j �=i

xij t =
N∑

j=0,j �=i

xjit , i = 0, . . . ,N (17)

Denote D(λ) be the function of the optimal objective value of RP for any given Lagrange
multipliers {λijt}(N+1)×N×T . The Lagrangian dual problem (denoted by DP) is

Model DP:

max
λ

D(λ) (18)

where maxD(λ) = max{Zλ(d, q, x)| s.t. λ ≥ 0, (3′), (4′), (5)–(8), (10), (11′), and (12)}.
For each given {λijt}(N+1)×N×T > 0, we have:
Zλ(d, q, x) = Z1

λ(d, q) + Z2
λ(x) = Z1

λ(d, q) + ∑
t∈T Z2t

λ (x(t)) and Zλ(d, q, x) ≤ Z∗,
where Z∗ is the optimal value of model P′.

3.2 Partial linearization for subproblem INV

The subproblem INV is a nonlinear programming problem and can not be easily solved
by using a commercial software such as Lingo. Fortunately, the objective function of INV
is obviously a convex and increasing function of dit t = 1, . . . , T , and all the constraints
of INV are linear. It can be solved by using a partial linearization method proposed by
Patriksson (1993) as follows.

Defining Git (di1, . . . , dit ) = hit

∫ Ii,0+∑t
s=1 dis

0 (Ii,0 + ∑t

s=1 dis − x)F ′
i,(1,t)(x)dx, we have

T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dis

0

(

Ii,0 +
t∑

s=1

dis − x

)

dFi,(1,t)(x) =
T∑

t=1

N∑

i=1

Git (di1, . . . , dit )

The gradient of Git (di1, . . . , dit ) with respect to div v = 1, . . . , t is

∂Git (di1, . . . , div, . . . , dit )

∂div

= ∂hit

∫ Ii,0+∑t
s=1 dis

0 (Ii,0 + ∑t

s=1 dis − x)F ′
i,(1,t)(x)dx

∂div

= ∂hit

∫ Ii,0+∑t
s=1 dis

0 (Ii,0 + ∑t

s=1 dis)F
′
i,(1,t)(x)dx

∂div

− ∂hit

∫ Ii,0+∑t
s=1 dis

0 xF ′
i,(1,t)(x)dx

∂div

=
[

hit

∫ Ii,0+∑t
s=1 dis

0

∂(Ii,0 + ∑t

s=1 dis)

∂div

F ′
i,(1,t)(x)dx

+ hit

(

Ii,0 +
t∑

s=1

dis

)∫ Ii,0+∑t
s=1 dis

0
F ′′

i,(1,t)(x)dx

]

− hit

(

Ii,0 +
t∑

s=1

dis

)

F ′
i,(1,t)

(

Ii,0 +
t∑

s=1

dis

)
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= hit

∫ Ii,0+∑t
s=1 dis

0
F ′

i,(1,t)(x)dx

= hitFi,(1,t)

(

Ii,0 +
t∑

s=1

dis

)

, v = 1, . . . , t

At any point dk
it , t = 1, . . . , T , i = 1, . . . ,N , the linearization of

∑T

t=1

∑N

i=1 hit

∫ Ii,0+∑t
s=1 dis

0

(Ii,0 + ∑t

s=1 dis − x)dFi,(1,t)(x) is thus
∑T

t=1

∑N

i=1 hit

∫ Ii,0+∑t
s=1 dk

is

0 (Ii,0 + ∑t

s=1 dk
is −

x)dFi,(1,t)(x) + ∑T

t=1

∑N

i=1

∑t

s=1(dis − dk
is)hitFi,(1,t)(Ii,0 + ∑t

s=1 dk
is)).

The linearization of Z1
λ(d, q) at the point, denoted by Z̄1((d, q), (dk, qk)), is thus

Z̄1((d, q), (dk, qk)) =
T∑

t=1

N∑

i=1

hit

∫ Ii,0+∑t
s=1 dk

is

0

(

Ii,0 +
t∑

s=1

dk
is − x

)

dFi,(1,t)(x)

+
T∑

t=1

N∑

i=1

t∑

s=1

(dis − dk
is)hitFi,(1,t)

(

Ii,0 +
t∑

s=1

dk
is

)

+
T∑

t=1

N∑

j=1,j �=i

N∑

i=0

(λij t + cij )qij t . (19)

The partial linearization method solves a linear programming problem and performs a line
search at each iteration. For our problem, at each iteration k, the method solves the following
linear programming problem (denoted by IPk):

IPk :

min Z̄1((d, q), (dk, qk)) (20)

subject to constraints (3′), (4′), (5), (7), (8), (10) and (12). and performs a line search to
minimize Z1

λ(d, q) for subproblem INV, i.e.,

min
ρ

{Z1
λ(d, q)|(d, q) = ρ(dk, qk) + (1 − ρ)(d̄k, q̄k),0 ≤ ρ ≤ 1}, (21)

where (d̄k, q̄k) is an optimal solution of IPk . The starting point (dk+1, qk+1) of the iteration
k + 1 is taken as the solution of the line search at the iteration k.

The iterative procedure continues until (dk, qk) also solves IPk . That is, Z̄1((d, q),

(dk, qk)) = Z̄1((d, q), (d̄k, q̄k)). Initially at k = 0, (dk, qk) is taken as a feasible solution
of subproblem INV.

3.3 Minimum cost flow for ROU subproblem

The constraint matrix of subproblem ROU is totally unimodular and the right-hand side
are integers, so every basic feasible solution is integral (see Wolsey 1998). In other words,
solving the problem as a linear program using the simplex method always yields an integral
solution. We can then relax xijt ∈ {0,1} to 0 ≤ xijt ≤ 1, which transforms subproblem ROU
into a minimum cost flow (MCF) problem. MCF can be solved by the scaling out-of-kilter
algorithm (Ciupala 2005) in the polynomial time of O(m(m + n logn)) where m, and n are
the number of arcs (N + 1) ∗ (N + 1), and the number of nodes (N + 1), respectively.
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3.4 Subgradient method for the dual problem

The Lagrangian relaxation approach maximizes the dual objective (18) by using subgradient
method. We use adaptive step sizing strategy to set the step size of the method in each
iteration. The algorithm steps for the Lagrangian relaxation (Yu et al. 2005) is given as
follows.

Step 0. Give an initial value λ0 = 0, θ0 = 1 and k = 0
Step 1. Calculate subproblem INV and subproblem ROU.
Step 2. Calculate step size sk in iteration k by

sk = β(L∗ − L̃k)/‖gk‖2

where β is a parameter with 0 < β < 1, L̃k is current lower bound, L̃[k] is the best dual
obtained prior to iteration k, L∗ is estimated by (1 + ω

θρ )L̃[k], where ω ∈ [0.1,1.0], ρ ∈
[1.1,1.5], θk+1 = max(1, θk − 1) (θk is value of θ in iteration k if Lk > L̃[k], otherwise
θk+1 = θk + 1), and ‖gk‖2 = ∑T

t=1

∑N

j=1,j �=i

∑N

i=0(q
k
ij t − C · xk

ij t )
2.

Step 3. Calculate λk+1
ij t = max{λk

ij t + sk(qk
ij t − C · xk

ij t ),0}.
Step 4. Check stopping criteria. The criteria may be given by

(1)
∑

ij t |λk+1
ij t − λk

ij t | ≤ ε1 or ‖λk+1 − λk‖ ≤ ε2, or
(2) a given maximal iteration time reached; where ε1 and ε2 are given little positive num-

bers.

If the criterion is met, stop and output all required results. Otherwise, set k = k + 1 and
go to Step 1.

The solution of the Lagrangian relaxation problem not only provides a lower bound
of Model P′, then the SIRPSD, but also can be used to construct a near optimal feasible
solution of Model P′.

3.5 Feasible solution construction for the Model P′

Based on d , q obtained by solving the Lagrangian relaxed problem, similar to Yu et al.
(2008), a feasible solution Model P′ can be constructed by solving the following problem,
denoted by FP.

Model FP:

Zλ(x) = min
T∑

t=1

N∑

i=1

(cb
i0 + ft )xi0t (22)

Subject to

N∑

j=0,j �=i

xij t =
N∑

j=0,j �=i

xjit , i = 0, . . . ,N, t = 1, . . . , T (23)

⌈
qijt

C

⌉

≤ xijt , i = 0, . . . ,N, j = 1, . . . ,N, i �= j, t = 1, . . . , T (24)

xijt ∈ {0,1}, j �= i, xi0t , x0j t integer i, j = 1, . . . ,N, t = 1, . . . , T (25)

where qijt i = 0, . . . ,N, j = 1, . . . ,N, i �= j is obtained from the solution of the relaxed
problem solved by the subgradient method in Sect. 3.4. The problem FP can be reformulated
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as a minimal cost flow problem again by relaxing x to:

⌈
qijt

C

⌉

≤ xijt ≤ 1, i = 1, . . . ,N, j = 1, . . . ,N, i �= j, t = 1, . . . , T (26)

x0j t ≥
⌈

q0j t

C

⌉

, j = 1, . . . ,N, t = 1, . . . , T (27)

The problem can be decomposed into T sub-problems, one for each period.
In order to obtain a good feasible solution of Model P′, the feasible solution is constructed

based on every solution obtained in every iteration of the subgradient method in Sect. 3.4.
The best one (with the smallest total cost measured by (1′)) is selected as the final one.

4 Feasible solution construction and improvement for the SIRPSD

This section provides an approach to repair an obtained feasible solution of Model P′ in
Sect. 3.5 to a feasible solution of the studied SIRPSD, and improve it with some local search
improvements.

4.1 Repair a solution of P′ to a feasible solution of SIRPSD

In Sect. 3.5, a feasible solution, d, q, x of Model P′, is obtained, but this solution is not
implementable since q has not been allocated to individual vehicles for constructing feasible
routes. Moreover, the solution may define an infeasible solution to the original problem
SIRPSD (Yu et al. 2007). An example will be given later in Fig. 3. Moreover, we do not know
when (in which period) the infeasibility will occur to which customers. In this case, in order
to obtain a feasible solution of the SIRPSD, we have to check qijt and xijt of every customer
for feasibility of its related routes (Step 3 below), and fix each infeasible route to a feasible
one (Step 4 below). To ease the trace of every individual customer, the sequence of customers
and delivery volumes (qij t ) to check have to be defined first (Steps 1&2 below). Moreover,
because the customer nodes are numbered following arc directions in the corresponding
transportation graph (a directed graph), when we check node i, it is already known that all
inflow-outflow matches of its preceding nodes have been feasible and the adjustment of its
inflows is then not required.

Because the method is the same for every period, for simplification we omit the subscript
t of the corresponding variables and parameters in the following discussion. Similar to the
solution repair approach in (Yu et al. 2008), the method has the following steps.

Step 1. Build a directed transportation graph with specifically numbered nodes. With x

values in the feasible solution of Model P′, a directed transportation graph, as exemplified
in Fig. 1(a), can be defined in each period t where two customer nodes (or a customer
node and the depot node) i and j are connected xij times by directed arcs (i, j) if xij ≥
1. The depot is split into two virtual ones: an outgoing depot (numbered as 0) and an
incoming depot (numbered as 0′). The directed arcs associated with {xji |xji ≥ 1, j =
0, . . . ,N} are called incoming arcs of customer node i. The directed arcs associated with
{xij |xij ≥ 1, j = 0, . . . ,N} are called outgoing arcs of customer node i. The customer
nodes are virtually numbered here by applying the rule: Starting from the depot node 0,
an unnumbered customer node i can be numbered as next node if and only if all the nodes
connected to i with a direct arc have been numbered. For example, in Fig. 1(a), before
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Fig. 1 A directed transportation graph

Fig. 2 An example of a sub-cycle

starting the numbering, only the two depot nodes are numbered. Customer nodes 1 and 3
are the only two nodes that satisfy the rule, and one of them can be numbered as 1. One
of these two can be selected and numbered as 1 arbitrarily. We select the first one. Then,
customer nodes 2 and 3 become the next ones satisfying the rule and we can select one of
them to be numbered as 2. This process continues until all customer nodes are numbered.
The numbering will give a sequence to assign arc flows to vehicle routes.

Although constraints (7) ensure that there is no subtour in the graph, the nodes in the
direct graph may not be successfully numbered by simply applying the above rule. A typ-
ical situtation, illustrated in Fig. 2(a), may happen in the numbering. Customer nodes 1,
3, 4 form a sub-cycle (it is not a subtour) where customer 1 is revisited but constraints (7)
are satisfied. In this case, before numbering the customers, such a sub-cycle has to be
eliminated. Our elimination approach is illustrated by transforming Figs. 2(a) to 2(b).
Let qa

ij , q
b
ij denote the quantities transported on an arc from node i to j in Figs. 2(a)

and 2(b), respectively. The transformation of Fig. 2(a) to 2(b) can be made by setting
qb

42 = qa
12, q

b
34 = qa

34 − (qa
41 − qa

12), q
b
13 = qa

13 − (qa
41 − qa

12) and provides the total cost
reduction of (qa

41c41 + qa
12c12 − qb

42c42) + (qa
41 − qa

12)(c13 + c43).
Step 2 . Weight all directed arcs in the transportation graph. In the feasible solution of

Model P′, each xij ≥ 1 corresponds to qij . We weight all directed arcs with qij to obtain
a weighted graph shown in Fig. 1(b). For customer node i, {qji |xji ≥ 1, j = 0, . . . ,N}
form its inflows, and {qij |xij ≥ 1, j = 0, . . . ,N} form its outflows.

Step 3. Assign q on directed arcs to individual vehicle routes. Starting from numbered cus-
tomer node 1, we check nodes 2, . . . , n successively. For every customer node checked,
each of its inflows has to be matched with one outflow. If the outflow is no larger than the
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inflow, the match is feasible to the construction of a vehicle route. If all inflow-outflow
matches can be found and are feasible in the directed transportation graph, a set of feasible
routes can be naturally traced (constructed) from a feasible solution d, q, x of Model P′.
The solution of Model P′ is then a feasible solution of the SIRPSD. In step 3, an assign-
ment problem is solved to match inflows with outflows of each customer node for further
constructing vehicle routes. The objective function of the assignment problem is to find
feasible matches as many as possible (by introducing the cost coefficient CA

ln below) and
make possible adjustment of infeasible solutions as easy as possible (by introducing the
cost coefficient CB

ln below). We here define the assignment problem (denoted as AP) for-
mally for node i and the details can refer to our earlier paper (Yu et al. 2008).

Model AP:

min
L∑

l=1

L∑

n=1

(CA
ln + CB

ln)uln. (28)

Subject to:

∑

l

uln = 1, n = 1, . . . ,L (29)

∑

n

uln = 1, l = 1, . . . ,L (30)

uln ∈ {0,1}, l, n = 1, . . . ,L (31)

where L is the number of inflows and outflows of node i. The decision variables are de-
noted as ulm = 1 if incoming arc l is matched with outgoing arc m, and ulm = 0 otherwise.
ql+(i) is the l-th inflow (the flow of the l-th incoming arc) of node i that corresponds to
{qji |xji = 1, j = 0,1, . . . ,N, j �= i}. ql−(i) is the l-th outflow (the flow of the l-th outgo-
ing arc) of node i that corresponds to {qij |xij = 1, j = 0,1, . . . ,N, j �= i}. q̄min− (i) is the
minimum outflow of node i, that is, q̄min− (i) = minl{ql−(i)|l = 1, . . . ,L}. If outflow m of
node i is no larger than inflow l, which leads to a feasible match, we set CA

lm = 0. Other-
wise, we set CA

lm = M if ql+(i) < qm− (i) to penalize an infeasible match where M is a very
large positive number. CB

lm = q̄min− (k) − ql+(i) if ql+(i) < qm− (i) and q̄min− (k) − ql+(i) > 0
where k is the immediate successor of node i and the end of the m-th outgoing arc of
node i,CB

lm = 0 otherwise.
Note that, because x0i may be an integer larger than 1 (corresponding to multiple

arcs), for well defining the assignment problem, q0i has to be split into multiple quantities
which are assigned to the multiple arcs, one quantity for each arc. This can be realized by
setting each inflow of node i equal to a corresponding outflow of node i. The remaining
unassigned quality can be split and assigned arbitrarily to these inflows without violating
vehicle capacity.

If the minimum objective value of the AP for each customer node i, i = 1, . . . ,N is
zero, the inflows and the outflows of all customers can be matched to trace a set of feasible
routes. As a result, all customers are assigned to feasible routes, and a feasible solution
of IRPSD is thus obtained. Otherwise,

∑L

l=1

∑L

n=1(C
A
ln + CB

ln)uln > 0 for some nodes in
Model AP and go to the next step.

Step 4. Adjust each infeasible inflow-outflow match into a feasible one. If the minimum ob-
jective value of model AP for a customer is not equal to zero, some matches are infeasible
and have to be adjusted. As a typical situation shown in Fig. 3(a), the dotted inflow (10)
of node 3 from node 1 can not be feasibly matched to either of the two outflows of node 3.
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Fig. 3 An example for value adjustment

In this case, the minimum objective value of the corresponding assignment problem must
be larger than 0 and the adjustment of the values x, q is inevitable. In this case, the values
x, q in Fig. 3(a) are adjusted to those in Fig. 3(b).

The procedure of the matching and value adjustment for all customer nodes in every
period is performed one by one following the given node sequence and a feasible solution
of the studied SIRPSD can then obtained if all customer nodes have been examined.

4.2 Local search improvement of the feasible solution of the SIRPSD

A feasible solution of the SIRPSD can be improved further by local search. This subsection
presents several local search heuristics to reduce the total cost of the SIRPSD as follows.

4.2.1 Relocation of customer delivery between two routes

Multiple vehicle routes may serve a common customer, such as in Fig. 4(a) where customer 1
is a common customer of routes 1 and 2. A relocation method shown in Fig. 4(b)–(c) can
be used to reduce the routing cost; compared to Fig. 3(a), Fig. 3(b) relocates 10 units of
product from route 2 to 1 such that route 2 can visit customer 3 directly from the depot (0)
by avoiding a detour via customer 1. Similarly, we get Fig. 3(c). The variable transportation
costs are reduced by Figs. 3(b) and 3(c) can then be calculated as (80c01 + 50c01 + 70c13)−
(70c03 +60c01) = (80×2+50×2+70×2)− (70×3+60×2) = 70 and (80c01 +50c01 +
40c12) − (90c01 + 40c02) = (80 × 2 + 50 × 2 + 40 × 2) − (90 × 2 + 40 × 2) = 80 for those
two relocations respectively. Because 80 > 70, the relocation in Fig. 3(c) is selected to save
80 units of the total cost.

As an special case, it is possible that multiple routes visit a common customer but one
of them may drop-off zero unit of the product. For example, in Fig. 5(a), route 1 visits
customer 3 without delivering any unit of the product. In this case, by deleting the common
customer from route 1, the variable transportation cost can be reduced by 90(c03 + c34 −
c04) = 90(2 + 2 − 3) = 90 according to the triangle inequalities for cij .

The procedure to implement the above local search improvement is as follows. Step 1,
at every customer node, check whether the customer is served by multiple vehicle routes. If
no, go to the next customer node. Otherwise, go to step 2. Step 2: implement the local search
improvement (illustrated in Figs. 3 or 4) if it can bring a cost saving. After the local search,
go to step 1 for checking the next customer node.
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Fig. 4 Example 1 for local search improvement

Fig. 5 Example 2 for local search improvement

4.2.2 Reduce the number of routes

The number of routes can be reduced by merging two vehicles not fully loaded to make all
routes as fully loaded as possible if the merging reduces the total cost. With the reduction
of route number, it is possible to increase the total vehicle utilization, and reduce the fixed
cost

∑T

t=1

∑N

i=1 ftxi0t . In this local search, every pair of routes is checked, and two vehicle
routes are merged if the merged route is feasible and the total transportation cost is reduced.
Figures 6(b)–6(c) illustrates two options of merging routes in Fig. 6(a). In Fig. 6(b), the
merging can reduce the transportation cost by ft + 50c02 + cb

40 − 50(c01 + c14 + c42) =
100 + 50 + 3 − 50(1 + 1 + 1) = 3. In Fig. 6(c), the merging can reduce the transportation
cost by ft +30c01 + cb

30 −30(c02 + c23 + c31) = 100+30+3−30(1+1+1) = 43. Because
43 > 3, the route merging in Fig. 6(b) is selected.

The algorithm to reduce the number routes works as follow. Step 1: pick out all q0i , i =
1, . . . ,N that are positive. Step 2: check each q0i > 0 sequentially and find all pairs of routes
that can be merged. Step 3: find the largest cost reductions from all the merging options with
the methods in Fig. 6 and merge the two routes. Step 4: similarly, check all the rest pairs of
routes sequentially for possible merging that can reduce the transportion cost.
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Fig. 6 Example 3 for local search improvement

5 Normal distribution for demands and solution evaluation

In Model P or P′, the stochastic demand in each period is in a generic form that is ap-
plicable to different stochastic demand distributions, such as normal distribution, Weibull
Distribution, Log Normal Distribution. In order to apply our proposed model and solution
approaches to numerical examples, we have to specify the distributions of the customers’
stochastic demands.

For a given distribution of ζit in our Model P, we need to obtain Fi,(1,t)(Ii,0 + ∑t

s=1 dis)

values for (1′), constraints (3′) and (4′), and update these constraints. We here show the
update process for the normal distribution of ζit . The normal distribution the most commonly
used both in theory and practice.

5.1 Normal distribution for stochastic demands

Supposing that ζit is a random variable subject to a normal distribution with mean ui and
standard deviation σi . That is,

ζit ∼ N(ui, σ
2
i ) (32)

We have a probability density function: fit (ζit ) = 1
σi

√
2π

e
− (ζit −ui )

2

2σ2
i − ∞ ≤ ζit ≤ +∞.

The accumulative customer demand ζi,(1,t) = ∑t

s=1 ζis obeys

ζi,(1,t) ∼ N(tui, tσ
2
i ) (33)

Defining (x) = 1√
2π

∫ x

0 e−t2/2dt , we have

Fi,(1,t)(r) = P (ζi,(1,t) ≤ r) = P

(
ζi,(1,t) − tui√

tσi

≤ r − tui√
tσi

)

= 

(
r − tui√

tσi

)

(34)
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For the stochastic part
∑T

t=1 E(
∑N

i=1 hit I
+
it ) in the objective function (1′), using Mathe-

matica 6.0 (Wolfram 2007), we can obtain E(
∑N

i=1 hit I
+
it ) = ∫ Ii,0+∑t

s=1 dis

0 (Ii,0 +∑t

s=1 dis −
r)dFi,(1,t)(r) = 1

2 ((e−(Ii,0+∑t
s=1 dis−tui )

2/(2tσ 2
i
) − e−tu2

i
/(2σ 2

i
))σi

√
2t
π

+ 2(Ii,0 + ∑t

s=1 dis −
tui)((

ui

√
t

σi
) − (

(tui−(Ii,0+∑t
s=1 dis ))

σi

√
t

))).

For constraints (3) or (3′), we have Fi,(1,t)(Ii,0 + ∑t

s=1 dis) − Fi,(1,t)(0) ≥ αit , that is,



(
((Ii,0 + ∑t

s=1 dis) − tui)

σi

√
t

)

− 

(−ui

√
t

σi

)

≥ αit and



(
((Ii,0 + ∑t

s=1 dis) − tui)

σi

√
t

)

≥ 

(−ui

√
t

σi

)

+ αit

After reformulating, we have
∑t

s=1 dis ≥ tui + σi

√
t−1((−ui

√
t/σi) + αit ) − Ii,0. In

practice, if σi ≤ 30%ui , Fi,(1,t)(0) = (−ui

√
t/σi) ≤ 4.3×10−4 in constraints (3). In such a

case, we can therefore omit Fi,(1,t)(0) (i.e., (−ui

√
t/σi)) and reformulate (3) as

∑t

s=1 dis ≥
tui +σi

√
t−1(αit )− Ii,0. Note that Iit is a function of the product deliveries and stochastic

demands of customer i in all the previous t periods. The longer t is, the larger standard
deviation of ζi,(1,t) (i.e.,

√
tσi from (33)) we have. As a result, the larger

∑t

s=1 dis is required
to satisfy the service level of the depot.

Similarly, for constraints (4) or (4′), we have Fi,(1,t−1)(Ii,0 +∑t

s=1 dis −Vi) ≤ 1−βit . Ac-

cording to (33), Fi,(1,t−1)(Ii,0 +∑t

s=1 dis −Vi) = (
(Ii,0+∑t

s=1 dis )−Vi−(t−1)ui

σi

√
t−1

). Constraints (4′)
then become (Ii,0 +∑t

s=1 dis)−Vi − (t − 1)ui ≤ σi

√
t − 1−1(1 −βit ). That is

∑t

s=1 dis ≤
Vi + (t − 1)ui + σi

√
t − 1−1(1 − βit ) − Ii,0.

5.2 Solution evaluation

In Sect. 4, a feasible solution of the SIRPSD is obtained and its corresponding total cost
provides an upper bound of the minimum total cost of the studied SIRPSD. The quality of
the solution can then be evaluated by the relative gap between the lower and upper bounds,
e.g., (the upper bound-the lower bound)/the lower bound ×100%. The smaller the gap is,
the better the solution is. A lower bound of the minimum total cost is already available as
the result of Sect. 3.4 for the evaluation in this paper.

6 Numerical examples

This section aims to evaluate the performance of our developed approach. The stochastic
demand ζit is subject to a normal distribution with ζit ∼ N(ui, σ

2
i ). We first consider a base

example with the total number of customers and the depot, N0, being 100. In the example,
the length of the time horizon is taken as T = 5, which corresponds to five working days
every week. Parameters uit , C, ft , hit , Ii0, and Vi are randomly and uniformly generated
from the intervals [50, 400], [100, 300], [400, 700], [0.5, 2], [50, 400], and [600, 1000]
respectively; For cij , to ensure that the triangle inequality condition is satisfied, we first
generate the coordinates of all customers and the central depot from a 10 × 10 square, and
then calculate cij as the geometrical distance between customers i and j. σit = 0.2uit , αit =
βit = 95%, and cb

i0 = 10 × ci0. The domains of the above parameters are mainly taken from
Yu et al. (2008). We generate 10 random examples for the base example with corresponding
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Table 1 Notations used in numerical results

UB Upper bound of the SIRPSD (given by the near optimal solution of the SIRPSD)

LB Lower bound of the SIRPSD (found by the Lagrangian relaxation approach in Sect. 3)

Gap Value of (UB − LB)/LB × 100%

CT Computational time (minutes: seconds)

Table 2 Computational results
for the base example Instance LB (105) UB (105) Gap (%) CT

1 10.36 10.69 3.24 12:43

2 8.06 8.51 5.57 11:59

3 9.14 9.94 8.76 10:25

4 7.41 7.90 6.60 11:13

5 12.27 12.36 0.78 13:01

6 11.89 12.03 1.16 12:54

7 10.24 10.61 3.63 11:22

8 7.00 7.59 8.35 11:10

9 8.52 9.05 6.20 11:18

10 10.25 10.51 2.49 11:05

Average 9.51 9.85 4.68 11:47

results presented in Table 2. The notations used for presenting the results are shown in
Table 1.

In order to evaluate the robustness of our approach, based on the parameters of the base
example, we generate 10 instances for each of other four scenarios: (a) the service levels of
customer demands αit , and the customers’ warehouses βit are both changed from 95% to
99% (see results in Table 3), (b) σit is changed from 0.2uit to 0.3uit (the results shown in
Table 4), (c) T is changed from 5 to 10 (the results shown in Table 5), and (d) N0 is changed
from 100 to 200 (the results shown in Table 6).

The approach is coded in C++ using callable library of Lingo 6.0. To obtain a high
quality solution of the SIRPSD, we construct a feasible solution of the Model P′ based on
the solution of its relaxed problem in every iteration. The best feasible solution of Model P′
is repaired to be the final feasible solution of the SIRPSD. The test is conducted on an
Intel (R) Core (TM) Due CPU 2.4 GHz notebook PC with 2 G RAM and the termination
condition of each instance for the Lagrangian relaxation approach is 150 iterations.

From Tables 2, 3, 4, 5, 6, we obtain the following observations:

(1) Our algorithm can obtain high quality near-optimal solutions to the studied SIRPSD
with the average gap between the upper bound and the lower bound of the problem less
than 5.3% for all considered scenarios.

(2) For all the scenarios, the largest gap is 9.73% (in Table 3) and the smallest gap is 0.78%
(in Table 2). This shows that our approach is robust since the gap for a scenario does not
change much with the change of parameter values.

(3) Our approach can solve large instances of the SIRPSD in a reasonable computational
time on an ordinary PC, with the average computational time of the instances of the
base example being only 11 minutes and 47 seconds. With the increase of the problem
size from N0 = 100 to 200, our approach can obtain near optimal solutions within 70
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Table 3 Results for the example
with service levels (αit and βit )
no less than 99%

Instance LB (105) UB (105) Gap (%) CT

1 11.80 12.01 1.78 12:40

2 12.78 13.04 2.04 13:11

3 11.03 11.31 2.54 12:37

4 11.73 12.16 3.69 11:04

5 8.49 8.95 5.42 12:39

6 8.42 8.81 4.67 11:27

7 9.12 9.59 5.19 12:13

8 8.70 9.33 7.23 11:52

9 9.66 10.20 5.51 11:17

10 7.59 8.33 9.73 11:10

Average 9.93 10.60 4.78 12:07

Table 4 The results for the
example with σit = 0.3uit

Instance LB (105) UB (105) Gap (%) CT

1 9.90 10.38 4.85 10:33

2 9.29 9.74 4.84 10:04

3 9.48 10.00 5.45 11:31

4 13.89 14.07 1.27 10:46

5 8.80 9.44 7.37 12:17

6 9.42 9.75 3.46 10:15

7 10.14 10.59 4.42 11:01

8 9.59 10.04 4.65 10:33

9 8.79 9.36 6.49 11:09

10 9.09 9.49 4.35 11:23

Average 9.84 10.37 4.71 10:54

minutes on average. Although the number of decision variables increases from about 99
thousands to about 400 thousands and the number of integer variables from about 50
thousands to about 200 thousands in each instance, similar results can be obtained when
T is changed from 5 to 10.

(4) With the increase of the problem size, the average gap increases slightly. For instance,
with the increase of N0 from 100 to 200 or the increase of T from 5 to 10, the average
gap only increases 0.22% and 0.61% respectively from Tables 5, 6.

(5) If other criterions, like the service level, βit for each customer i’s warehouse or αit for
each customer i’s demand, increase, the average total cost for a corresponding scenario
also increases but the average gap between the upper and lower bounds only changes
slightly. This can be seen from the comparison between Table 2 and 3.

(6) With the increase of the uncertainty of the customers’ demands by changing σit = 0.2uit

to σit = 0.3uit , we can find that the average gap increases slightly by 0.04%. This may
be because meeting the required service levels becomes more difficult with the increase
of the demand uncertainty.



Ann Oper Res

Table 5 The results for the
example with T = 10 Instance LB (105) UB (105) Gap (%) CT

1 21.20 21.59 1.84 29:52

2 17.33 18.31 5.65 30:27

3 18.18 18.95 4.23 27:44

4 20.03 20.83 3.99 28:45

5 16.93 18.45 8.93 28:54

6 18.01 18.64 3.50 31:02

7 17.84 19.08 6.94 27:37

8 19.84 20.70 4.34 26:60

9 15.77 17.10 8.43 28:52

10 17.56 18.44 5.01 31:23

Average 18.27 19.29 5.29 28:55

Table 6 The results for the
example with N0 = 200 Instance LB (105) UB (105) Gap (%) CT

1 19.61 20.23 3.15 75:27

2 14.98 15.93 6.37 67:41

3 18.55 19.85 7.01 63:18

4 17.01 17.49 2.84 73:36

5 15.83 16.86 6.46 65:09

6 21.51 22.11 2.77 77:34

7 15.34 16.19 5.59 65:21

8 16.27 17.34 6.56 68:42

9 22.17 22.65 2.18 67:57

10 17.27 18.32 6.04 68:03

Average 16.23 18.74 4.90 69:25

7 Conclusion

This paper studies a stochastic inventory routing problem with split delivery where the ser-
vice level to satisfy each customer’s demand measured in stockout probability and the ser-
vice level to each customer’s warehouse measured in its overfilling probability are consid-
ered. The complexity of the SIRPSD with service levels motivates us to develop a hybrid
approach which uses techniques such as the transformation of stochastic components of a
model of the SIRPSD into deterministic ones, the use of Lagrangian relaxation to decom-
pose the model into submodels, the partial linearization of the nonlinear objective function
of the model, and local search improvement of feasible solutions of the studied SIRPSD to
solve it. The numerical examples demonstrate that our proposed approach can obtain high
quality solutions in a reasonable computational time on an ordinary personal computer.
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