26,816 research outputs found

    High temperature color conductivity at next-to-leading log order

    Full text link
    The non-Abelian analog of electrical conductivity at high temperature has previously been known only at leading logarithmic order: that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling. We calculate the first sub-leading correction. This has immediate application to improving, to next-to-leading log order, both effective theories of non-perturbative color dynamics, and calculations of the hot electroweak baryon number violation rate.Comment: 47 pages, 6+2 figure

    Noisy Optimization: Convergence with a Fixed Number of Resamplings

    Get PDF
    It is known that evolution strategies in continuous domains might not converge in the presence of noise. It is also known that, under mild assumptions, and using an increasing number of resamplings, one can mitigate the effect of additive noise and recover convergence. We show new sufficient conditions for the convergence of an evolutionary algorithm with constant number of resamplings; in particular, we get fast rates (log-linear convergence) provided that the variance decreases around the optimum slightly faster than in the so-called multiplicative noise model. Keywords: Noisy optimization, evolutionary algorithm, theory.Comment: EvoStar (2014

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Neutral genetic drift can aid functional protein evolution

    Get PDF
    BACKGROUND: Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. RESULTS: Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one function based on the measurement of several others. CONCLUSIONS: Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection "ask new questions" in the future

    Pesin's Formula for Random Dynamical Systems on RdR^d

    Full text link
    Pesin's formula relates the entropy of a dynamical system with its positive Lyapunov exponents. It is well known, that this formula holds true for random dynamical systems on a compact Riemannian manifold with invariant probability measure which is absolutely continuous with respect to the Lebesgue measure. We will show that this formula remains true for random dynamical systems on RdR^d which have an invariant probability measure absolutely continuous to the Lebesgue measure on RdR^d. Finally we will show that a broad class of stochastic flows on RdR^d of a Kunita type satisfies Pesin's formula.Comment: 35 page

    Low-lying bifurcations in cavity quantum electrodynamics

    Get PDF
    The interplay of quantum fluctuations with nonlinear dynamics is a central topic in the study of open quantum systems, connected to fundamental issues (such as decoherence and the quantum-classical transition) and practical applications (such as coherent information processing and the development of mesoscopic sensors/amplifiers). With this context in mind, we here present a computational study of some elementary bifurcations that occur in a driven and damped cavity quantum electrodynamics (cavity QED) model at low intracavity photon number. In particular, we utilize the single-atom cavity QED Master Equation and associated Stochastic Schrodinger Equations to characterize the equilibrium distribution and dynamical behavior of the quantized intracavity optical field in parameter regimes near points in the semiclassical (mean-field, Maxwell-Bloch) bifurcation set. Our numerical results show that the semiclassical limit sets are qualitatively preserved in the quantum stationary states, although quantum fluctuations apparently induce phase diffusion within periodic orbits and stochastic transitions between attractors. We restrict our attention to an experimentally realistic parameter regime.Comment: 13 pages, 10 figures, submitted to PR

    Nonlinear dynamics of mode-locking optical fiber ring lasers

    Get PDF
    We consider a model of a mode-locked fiber ring laser for which the evolution of a propagating pulse in a birefringent optical fiber is periodically perturbed by rotation of the polarization state owing to the presence of a passive polarizer. The stable modes of operation of this laser that correspond to pulse trains with uniform amplitudes are fully classified. Four parameters, i.e., polarization, phase, amplitude, and chirp, are essential for an understanding of the resultant pulse-train uniformity. A reduced set of four coupled nonlinear differential equations that describe the leading-order pulse dynamics is found by use of the variational nature of the governing equations. Pulse-train uniformity is achieved in three parameter regimes in which the amplitude and the chirp decouple from the polarization and the phase. Alignment of the polarizer either near the slow or the fast axis of the fiber is sufficient to establish this stable mode locking
    corecore