442 research outputs found

    Which market protocols facilitate fair trading?

    Get PDF
    The evaluation of an exchange market is a multi-faceted problem. An important criterion is the ability to achieve allocative efficiency. Gode and Sunder (1993) shows that a continuous double auction for singleunit trades leads to an efficient allocation even when the traders exhibit “zero-intelligence”; in other words, market protocols are active contributors in the search for a better outcome. Under reasonable circumstances, most of the commonly used market protocols share the ability to help traders discover an efficient allocation

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Adaptive-Aggressive Traders Don't Dominate

    Get PDF
    For more than a decade Vytelingum's Adaptive-Aggressive (AA) algorithm has been recognized as the best-performing automated auction-market trading-agent strategy currently known in the AI/Agents literature; in this paper, we demonstrate that it is in fact routinely outperformed by another algorithm when exhaustively tested across a sufficiently wide range of market scenarios. The novel step taken here is to use large-scale compute facilities to brute-force exhaustively evaluate AA in a variety of market environments based on those used for testing it in the original publications. Our results show that even in these simple environments AA is consistently out-performed by IBM's GDX algorithm, first published in 2002. We summarize here results from more than one million market simulation experiments, orders of magnitude more testing than was reported in the original publications that first introduced AA. A 2019 ICAART paper by Cliff claimed that AA's failings were revealed by testing it in more realistic experiments, with conditions closer to those found in real financial markets, but here we demonstrate that even in the simple experiment conditions that were used in the original AA papers, exhaustive testing shows AA to be outperformed by GDX. We close this paper with a discussion of the methodological implications of our work: any results from previous papers where any one trading algorithm is claimed to be superior to others on the basis of only a few thousand trials are probably best treated with some suspicion now. The rise of cloud computing means that the compute-power necessary to subject trading algorithms to millions of trials over a wide range of conditions is readily available at reasonable cost: we should make use of this; exhaustive testing such as is shown here should be the norm in future evaluations and comparisons of new trading algorithms.Comment: To be published as a chapter in "Agents and Artificial Intelligence" edited by Jaap van den Herik, Ana Paula Rocha, and Luc Steels; forthcoming 2019/2020. 24 Pages, 1 Figure, 7 Table

    The Strategic Exploitation of Limited Information and Opportunity in Networked Markets

    No full text
    This paper studies the effect of constraining interactions within a market. A model is analysed in which boundedly rational agents trade with and gather information from their neighbours within a trade network. It is demonstrated that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree of connectivity within the market. Where traders differ in their number of potential trading partners, well-connected traders are found to benefit from aggressive trading behaviour.Where information propagation is constrained by the topology of the trade network, connectedness affects the nature of the strategies employed

    Increasing negotiation performance at the edge of the network

    Full text link
    Automated negotiation has been used in a variety of distributed settings, such as privacy in the Internet of Things (IoT) devices and power distribution in Smart Grids. The most common protocol under which these agents negotiate is the Alternating Offers Protocol (AOP). Under this protocol, agents cannot express any additional information to each other besides a counter offer. This can lead to unnecessarily long negotiations when, for example, negotiations are impossible, risking to waste bandwidth that is a precious resource at the edge of the network. While alternative protocols exist which alleviate this problem, these solutions are too complex for low power devices, such as IoT sensors operating at the edge of the network. To improve this bottleneck, we introduce an extension to AOP called Alternating Constrained Offers Protocol (ACOP), in which agents can also express constraints to each other. This allows agents to both search the possibility space more efficiently and recognise impossible situations sooner. We empirically show that agents using ACOP can significantly reduce the number of messages a negotiation takes, independently of the strategy agents choose. In particular, we show our method significantly reduces the number of messages when an agreement is not possible. Furthermore, when an agreement is possible it reaches this agreement sooner with no negative effect on the utility.Comment: Accepted for presentation at The 7th International Conference on Agreement Technologies (AT 2020

    Strategies used as spectroscopy of financial markets reveal new stylized facts

    Get PDF
    We propose a new set of stylized facts quantifying the structure of financial markets. The key idea is to study the combined structure of both investment strategies and prices in order to open a qualitatively new level of understanding of financial and economic markets. We study the detailed order flow on the Shenzhen Stock Exchange of China for the whole year of 2003. This enormous dataset allows us to compare (i) a closed national market (A-shares) with an international market (B-shares), (ii) individuals and institutions and (iii) real investors to random strategies with respect to timing that share otherwise all other characteristics. We find that more trading results in smaller net return due to trading frictions. We unveiled quantitative power laws with non-trivial exponents, that quantify the deterioration of performance with frequency and with holding period of the strategies used by investors. Random strategies are found to perform much better than real ones, both for winners and losers. Surprising large arbitrage opportunities exist, especially when using zero-intelligence strategies. This is a diagnostic of possible inefficiencies of these financial markets.Comment: 13 pages including 5 figures and 1 tabl
    corecore