179 research outputs found

    Genomic DNA fingerprinting of Vitis vinifera by the use of multi-loci probes

    Get PDF
    Charakterisierung genomischer DNA von Vitis vinifera mit Hilfe von ,,Multi-loci-Sonden"Durch Southern-Transfer von Restriktionsfragmenten genomischer DNA aus Vitis vinifera ließen sich Unterschiede zwischen verschiedenen Rebsorten aufzeigen; fĂŒr die Hybridisierung wurden Sonden aus M 13-DNA und Human-33.6-Minisatelliten-DNA verwendet. Die Restriktionsenzyme Hinf I und Hae III waren fĂŒr die Bestimmung sortenspezifischer DNA-Muster gleichermaßen geeignet. Die M 13-Sonde identifizierte in Verbindung mit beiden Enzymen etwa 3mal soviele Banden und zeigte viel mehr Abweichungen zwischen den Sorten auf als die Human-Minisatelliten-Sonde. Das Differenzierungsverfahren kann bei der Rebe zur Analyse der Abstammung, zur Definition von Merkmalen bei sortengeschĂŒtzten Reben sowie fĂŒr ZĂŒchtungsprogramme eingesetzt werden, sobald Korrelationen mit wirtschaftlich wichtigen Eigenschaften gesichert sind.

    High Cooperativity of the SV40 Major Capsid Protein VP1 in Virus Assembly

    Get PDF
    SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of ∌6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility

    Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato

    Get PDF
    Reproductive development of higher plants comprises successive events of organ differentiation and growth which finally lead to the formation of a mature fruit. However, most of the genetic and molecular mechanisms which coordinate such developmental events are yet to be identified and characterized. Arlequin (Alq), a semi-dominant T-DNA tomato mutant showed developmental changes affecting flower and fruit ripening. Sepals were converted into fleshy organs which ripened as normal fruit organs and fruits displayed altered ripening features. Molecular characterization of the tagged gene demonstrated that it corresponded to the previously reported TOMATO AGAMOUS-LIKE 1 (TAGL1) gene, the tomato ortholog of SHATTERPROOF MADS-box genes of Arabidopsis thaliana, and that the Alq mutation promoted a gain-of-function phenotype caused by the ectopic expression of TAGL1. Ectopic overexpression of TAGL1 resulted in homeotic alterations affecting floral organ identity that were similar to but stronger than those observed in Alq mutant plants. Interestingly, TAGL1 RNAi plants yielded tomato fruits which were unable to ripen. They displayed a yellow-orange color and stiffness appearance which are in accordance with reduced lycopene and ethylene levels, respectively. Moreover, pericarp cells of TAGL1 RNAi fruits showed altered cellular and structural properties which correlated to both decreased expression of genes regulating cell division and lignin biosynthesis. Over-expression of TAGL1 is able to rescue the non-ripening phenotype of rin and nor mutants, which is mediated by the transcriptional activation of several ripening genes. Our results demonstrated that TAGL1 participates in the genetic control of flower and fruit development of tomato plants. Furthermore, gene silencing and over-expression experiments demonstrated that the fruit ripening process requires the regulatory activity of TAGL1. Therefore, TAGL1 could act as a linking factor connecting successive stages of reproductive development, from flower development to fruit maturation, allowing this complex process to be carried out successfully

    Cisgenesis and intragenesis as new strategies for crop improvement

    Get PDF
    Cisgenesis and intragenesis are emerging plant breeding technologies which offer great promise for future acceptance of genetically engineered crops. The techniques employ traditional genetic engineering methods but are confined to transferring of genes and genetic elements between sexually compatible species that can breed naturally. One of the main requirements is the absence of selectable marker genes (such as antibiotic resistance genes) in the genome. Hence the sensitive issues with regard to transfer of foreign genes and antibiotic resistance are overcome. It is a targeted technique involving specific locus; therefore, linkage drag that prolongs the time for crop improvement in traditional breeding does not occur. It has great potential for crop improvement using superior alleles that exist in the untapped germplasm or wild species. Cisgenic and intragenic plants may not face the same stringent regulatory assessment for field release as transgenic plants which is a clear added advantage that would save time. In this chapter, the concepts of cis/intragenesis and the prerequisites for the development of cis/intragenesis plants are elaborated. Strategies for marker gene removal after selection of transformants are discussed based on the few recent reports from various plant species

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Determination of steady-state mRNA levels of individual chlorophyll a/b binding protein genes of the tomato cab gene family

    Full text link
    The steady-state levels of mRNA produced by 14 genes encoding members of the tomtato chlorophyll a/b binding protein family were quantified. All genes were found to be expressed in leaf tissue, but the mRNAs accumulated to significantly different levels. The transcripts of cab 1A, cab 1B, cab 3A and cab 3B, encoding the Type I LHC proteins of photosystem II, are abundant, while low levels were measured for mRNAs encoding the Type II LHC II and the LHC I proteins. Sequences from the 5â€Č upstream regions (−400 to translational start) of some cab genes were determined in this study, and a total of 16 tomato cab gene promoters for which sequences are now available were analyzed. Significant sequence conservation was found for those genes which are tandemly linked on the chromosome. However, the level of sequence conservation is different for the different cab subfamilies, e.g. 85% similarity between cab 1A and cab 1D vs. 45% sequence similarity between cab 3A and cab 3C upstream sequences. Characteristic GATA repeats with a conserved spacing were found in 5â€Č upstream sequences of cab 1AD, cab 3 A-C, cab 11 and cab 12. The consensus sequence CCTTATCAT, which is believed to mediate light responsiveness, was found at different locations in the upstream sequences of cab 6B, cab 7, cab 8, cab 9, cab 10A, cab 10B and cab 11. In 11 out of 15 genes the transcription initiation site was found to center on the triplet TCA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47581/1/438_2004_Article_BF00280298.pd
    • 

    corecore