7,731 research outputs found

    Entanglement entropy of integer Quantum Hall states

    Get PDF
    We compute the entanglement entropy, in real space, of the ground state of the integer Quantum Hall states for three different domains embedded in the torus, the disk and the sphere. We establish the validity of the area law with a vanishing value of the topological entanglement entropy. The entropy per unit length of the perimeter depends on the filling fraction, but it is independent of the geometry.Comment: 5 pages, 2 figures, minor changes, one reference adde

    Testing the equation of state for viscous dark energy

    Get PDF
    Some cosmological scenarios with bulk viscosity for the dark energy fluid are considered. Based on some considerations related to hydrodynamics, two different equations of state for dark energy are assumed, leading to power-law and logarithmic effective corrections to the pressure. The models are tested with the latest astronomical data from type Ia supernovae (Pantheon sample), measurements of the Hubble parameter HðzÞ, baryon acoustic oscillations and cosmic microwave background radiation. In comparison with the ΛCDM model, some different results are obtained and their viability is discussed. The power-law model shows some modest results, achieved under negative values of bulk viscosity, while the logarithmic scenario provide good fits in comparison to the ΛCDM model.Ministerio de Economía, Industria y Competitividad (project FIS2016-76363-P)Agencia de Gestión de Ayudas Universitarias y de Investigación (project 2017 SGR 247)CANTATA COST action (grant CA15117

    The effect of Fe atoms on the adsorption of a W atom on W(100) surface

    Full text link
    We report a first-principles calculation that models the effect of iron (Fe) atoms on the adsorption of a tungsten (W) atom on W(100) surfaces. The adsorption of a W atom on a clean W(100) surface is compared with that of a W atom on a W(100) surface covered with a monolayer of Fe atoms. The total energy of the system is computed as the function of the height of the W adatom. Our result shows that the W atom first adsorbs on top of the Fe monolayer. Then the W atom can replace one of the Fe atoms through a path with a moderate energy barrier and reduce its energy further. This intermediate site makes the adsorption (and desorption) of W atoms a two-step process in the presence of Fe atoms and lowers the overall adsorption energy by nearly 2.4 eV. The Fe atoms also provide a surface for W atoms to adsorb facilitating the diffusion of W atoms. The combination of these two effects result in a much more efficient desorption and diffusion of W atoms in the presence of Fe atoms. Our result provides a fundamental mechanism that can explain the activated sintering of tungsten by Fe atoms.Comment: 9 pages, 2 figure

    Is exponential gravity a viable description for the whole cosmological history?

    Full text link
    Here we analysed a particular type of F(R)F(R) gravity, the so-called exponential gravity which includes an exponential function of the Ricci scalar in the action. Such term represents a correction to the usual Hilbert-Einstein action. By using Supernovae Ia, Barionic Acoustic Oscillations, Cosmic Microwave Background and H(z)H(z) data, the free parameters of the model are well constrained. The results show that such corrections to General Relativity become important at cosmological scales and at late-times, providing an alternative to the dark energy problem. In addition, the fits do not determine any significant difference statistically with respect to the Λ\LambdaCDM model. Finally, such model is extended to include the inflationary epoch in the same gravitational Lagrangian. As shown in the paper, the additional terms can reproduce the inflationary epoch and satisfy the constraints from Planck data.Comment: 20 pages, 6 figures, analysis extended, version published in EPJ

    Integrated design optimization research and development in an industrial environment

    Get PDF
    An overview is given of a design optimization project that is in progress at the GE Research and Development Center for the past few years. The objective of this project is to develop a methodology and a software system for design automation and optimization of structural/mechanical components and systems. The effort focuses on research and development issues and also on optimization applications that can be related to real-life industrial design problems. The overall technical approach is based on integration of numerical optimization techniques, finite element methods, CAE and software engineering, and artificial intelligence/expert systems (AI/ES) concepts. The role of each of these engineering technologies in the development of a unified design methodology is illustrated. A software system DESIGN-OPT has been developed for both size and shape optimization of structural components subjected to static as well as dynamic loadings. By integrating this software with an automatic mesh generator, a geometric modeler and an attribute specification computer code, a software module SHAPE-OPT has been developed for shape optimization. Details of these software packages together with their applications to some 2- and 3-dimensional design problems are described
    corecore