130 research outputs found

    A Reference Section Through Fast-Spread Lower Oceanic Crust, Wadi Gideah, Samail Ophiolite (Sultanate of Oman): Petrography and Petrology

    Get PDF
    In the absence of a complete profile through fast-spreading modern oceanic crust, we established a reference profile through the whole paleo crust of the Samail ophiolite (Sultanate of Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. To establish a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the sheeted dikes and performed different analytical and structural investigations on the same suite of samples. This paper reports our studies of the lower crust, a 5 km thick pile of gabbros, focusing on petrographic features and on the results of mineral analyses. Depth profiles of mineral compositions combined with petrological modeling reveal insights into the mode of magmatic formation of fast-spreading lower oceanic crust, implying a hybrid accretion mechanism. The lower two thirds of the crust, mainly consisting of layered gabbros, formed via the injection of melt sills and in situ crystallization. Here, upward moving fractionated melts mixed with more primitive melts through melt replenishments, resulting in a slight but distinct upward differentiation trend. The upper third of the gabbroic crust is significantly more differentiated, in accord with a model of downward differentiation of a primitive parental melt originated from the axial melt lens located at the top of the gabbroic crust. Our hybrid model for crustal accretion requires a system to cool the deep crust, which was established by hydrothermal fault zones, initially formed on-axis at very high temperatures

    Origin of fluids and anhydrite precipitation at the sediment-hosted Grimsey hydrothermal field north of Iceland

    Get PDF
    The sediment-hosted Grimsey hydrothermal field is situated in the Tjörnes fracture zone (TFZ) which represents the transition from northern Iceland to the southern Kolbeinsey Ridge. The TFZ is characterized by a ridge jump of 75 km causing widespread extension of the oceanic crust in this area. Hydrothermal activity occurs in the Grimsey field in a 300 m×1000 m large area at a water depth of 400 m. Active and inactive anhydrite chimneys up to 3 meters high and hydrothermal anhydrite mounds are typical for this field. Clear, metal-depleted, up to 250 °C hydrothermal fluids are venting from the active chimneys. Anhydrite samples collected from the Grimsey field average 21.6 wt.% Ca, 1475 ppm Sr and 3.47 wt.% Mg. The average molar Sr/Ca ratio is 3.3×10−3. Sulfur isotopes of anhydrite have typical seawater values of 22±0.7‰ δ34S, indicating a seawater source for SO42−. Strontium isotopic ratios average 0.70662±0.00033, suggesting the precipitation of anhydrite from a hydrothermal fluid–seawater mixture. The endmember of the venting hydrothermal fluids calculated on a Mg-zero basis contains 59.8 μmol/kg Sr, 13.2 mmol/kg Ca and a 87Sr/86Sr ratio of 0.70634. The average Sr/Ca partition coefficient between the hydrothermal fluids and anhydrite of about 0.67 implies precipitation from a non-evolved fluid. A model for fluid evolution in the Grimsey hydrothermal field suggests mixing of upwelling hydrothermal fluids with shallowly circulating seawater. Before and during mixing, seawater is heated to 200–250 °C which causes anhydrite precipitation and probably the formation of an anhydrite-rich zone beneath the seafloor

    Portable inhalation systemfor a dosed insulin supply

    Get PDF
    Интенсивная инсулинотерапия необходима для контроля состояния пациентов с диабетом.Несмотря на постоянное усовершенствование инсулинотерапии, все ещ? существует проблема неудобства режимов многократных инъекций инсулина. Целью данной работы является создание системы, позволяющей осуществлять ингаляцию инсулина.Intensive insulin therapy is necessary for the control of a condition diabetic patients. Despite the constant improvement of insulin therapy, there is still the problem of discomfort repeated regimes of insulin injections. The objective of this work is to create a system that allows the inhalation of insulin

    Geochemistry of lavas from Mohns Ridge, Norwegian-Greenland Sea: implications for melting conditions and magma sources near Jan Mayen

    Get PDF
    Mohns Ridge lavas between 71 and 72°30′N (∼360 km) have heterogeneous compositions varying between alkali basalts and incompatible-element-depleted tholeiites. On a large scale there is a continuity of incompatible element and isotopic compositions between the alkali basalts from the island Jan Mayen and Mohns Ridge tholeiites. The variation in isotopes suggests a heterogeneous mantle which appears to be tapped preferentially by low degree melts (∼5%) close to Jan Mayen but also shows its signature much further north on Mohns Ridge. Three lava types with different incompatible element compositions [e.g. chondrite-normalized (La/Sm)N2] occur in the area at 72°N and were generated from this heterogeneous mantle. The relatively depleted tholeiitic melts were mixed with a small degree melt from an enriched source. The elements Ba, Rb and K of the enriched melt were probably buffered in the mantle by residual amphibole or phlogopite. That such a residual phase is stable in this region of oceanic mantle suggests both high water contents and low mantle temperatures, at odds with a hotspot origin for Jan Mayen. Instead we suggest that the melting may be induced by the lowered solidus temperature of a “wet” mantle. Mohns MORB (mid ocean ridge basalt) and Jan Mayen area alkali basalts have high contents of Ba and Rb compared to other incompatible elements (e.g. Ba/La >10). These ratios reflect the signature of the mantle source. Ratios of Ce/Pb and Rb/Cs are normal MORB mantle ratios of 25 and 80, respectively, thus the enrichments of Ba and Rb are not indicative of a sedimentary component added to the mantle source but were probably generated by the influence of a metasomatizing fluid, as supported by the presence of hydrous phases during the petrogenesis of the alkali basalts. Geophysical and petrological models suggest that Jan Mayen is not the product of hotspot activity above a mantle plume, and suggest instead that it owes its existence to the unique juxtaposition of a continental fragment, a fracture zone and a spreading axis in this part of the North Atlantic

    Geochemical and Isotopic Evolution of Late Oligocene Magmatism in Quchan, NE Iran

    Get PDF
    Magmatic activity that accompanied the collision between Arabia and Eurasia at ∼27 Ma, provides unique opportunities for understanding the triggers and magma reservoirs for collisional magmatism and its different styles in magmatic fronts and back-arcs. We present new ages and geochemical-isotopic results for magmatic rocks that formed during the collision between Arabia and Eurasia in NE Iran, which was a back-arc region to the main magmatic arcs of Iran. Our new zircon U-Pb ages indicate that collisional magmatism began at ∼24 Ma in the NE Iran back-arc, although magmatism in this area started in the Late Cretaceous time and continued until the Pleistocene. The collisional igneous rocks are characteristically bimodal, and basaltic-andesitic and dacitic-rhyolitic components show significant isotopic differences; εNd(t) = +4.4 to +7.4 and εHf(t) = +5.4 to +9.5 for mafic rocks and εNd(t) = +0.2 to +8.4 and εHf(t) = +3.4 to +12.3 for silicic rocks. The isotopic values and modeling suggest that fractional crystallization and assimilation-fractional crystallization played important roles in the genesis of felsic rocks in the NE Iran collisional zone. Trace element and isotopic modeling further emphasize that the main triggers of the magmatism in NE Iran comprise a depleted to the enriched mantle and the Cadomian continental crust of Iran. Our results also emphasize the temporal magmatic variations in the NE Iran back-arc from Late Cretaceous to Pleistocene. © 2021. The Authors

    Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates

    Get PDF
    A major tipping point of Earth's history occurred during the mid-Pliocene: the onset of major Northern-Hemisphere Glaciation (NHG) and of pronounced, Quaternary-style cycles of glacial-to-interglacial climates, that contrast with more uniform climates over most of the preceding Cenozoic and continue until today (Zachos et al., 2001). The severe deterioration of climate occurred in three steps between 3.2 Ma (warm MIS K3) and 2.7 Ma (glacial MIS G6/4) (Lisiecki and Raymo, 2005). Various models (sensu Driscoll and Haug, 1998) and paleoceanographic records (intercalibrated using orbital age control) suggest clear linkages between the onset of NHG and the three steps in the final closure of the Central American Seaways (CAS), deduced from rising salinity differences between Caribbean and the East Pacific. Each closing event led to an enhanced North Atlantic meridional overturning circulation and this strengthened the poleward transport of salt and heat (warmings of +2–3°C) (Bartoli et al., 2005). Also, the closing resulted in a slight rise in the poleward atmospheric moisture transport to northwestern Eurasia (Lunt et al., 2007), which probably led to an enhanced precipitation and fluvial run-off, lower sea surface salinity (SSS), and an increased sea-ice cover in the Arctic Ocean, hence promoting albedo and the build-up of continental ice sheets. Most important, new evidence shows that the closing of the CAS led to greater steric height of the North Pacific and thus doubled the low-saline Arctic Throughflow from the Bering Strait to the East Greenland Current (EGC). Accordingly, Labrador Sea IODP Site 1307 displays an abrupt but irreversible EGC cooling of 6°C and freshening by ~2 psu from 3.25/3.16–3.00 Ma, right after the first but still reversible attempt of closing the CAS

    Sub-arc mantle enrichment in the Sunda rear-arc inferred from HFSE systematics in high-K lavas from Java

    Get PDF
    Many terrestrial silicate reservoirs display a characteristic depletion in Nb, which has been explained in some studies by the presence of reservoirs on Earth with superchondritic Nb/Ta. As one classical example, K-rich lavas from the Sunda rear-arc, Indonesia, have been invoked to tap such a high-Nb/Ta reservoir. To elucidate the petrogenetic processes active beneath the Java rear-arc and the causes for the superchondritic Nb/Ta in some of these lavas, we studied samples from the somewhat enigmatic Javanese rear-arc volcano Muria, which allow conclusions regarding the across-arc variations in volcanic output, source mineralogy and subduction components. We additionally report some data for an along-arc sequence of lavas from the Indonesian part of the Sunda arc, extending from Krakatoa in the west to the islands of Bali and Lombok in the east. We present major and trace element concentrations, Sr–Nd–Hf–Pb isotope compositions, and high-field-strength element (HFSE: Nb, Ta, Zr, Hf, W) concentrations obtained via isotope dilution and MC-ICP-MS analyses. The geochemical data are complemented by melting models covering different source compositions with slab melts formed at variable P–T conditions. The radiogenic isotope compositions of the frontal arc lavas in combination with their trace element systematics confirm previously established regional variations of subduction components along the arc. Melting models show a clear contribution of a sediment-derived component to the HFSE budget of the frontal arc lavas, particularly affecting Zr–Hf and W. In contrast, the K-rich rear-arc lavas tap more hybrid and enriched mantle sources. The HFSE budget of the rear-arc lavas is in particular characterized by superchondritic Nb/Ta (up to 25) that are attributed to deep melting involving overprint by slab melts formed from an enriched garnet–rutile-bearing eclogitic residue. Sub-arc slab melting was potentially triggered along a slab tear beneath the Sunda arc, which is the result of the forced subduction of an oceanic basement relief ~ 8 Myr ago as confirmed by geophysical studies. The purported age of the slab tear coincides with a paucity in arc volcanism, widespread thrusting of the Javanese basement crust as well as the short-lived nature of the K-rich rear-arc volcanism at that time. © 2021, The Author(s)
    corecore