9,211 research outputs found

    Effects of a primordial magnetic field with log-normal distribution on the cosmic microwave background

    Get PDF
    We study the effect of primordial magnetic fields (PMFs) on the anisotropies of the cosmic microwave background (CMB). We assume the spectrum of PMFs is described by log-normal distribution which has a characteristic scale, rather than power-law spectrum. This scale is expected to reflect the generation mechanisms and our analysis is complementary to previous studies with power-law spectrum. We calculate power spectra of energy density and Lorentz force of the log-normal PMFs, and then calculate CMB temperature and polarization angular power spectra from scalar, vector, and tensor modes of perturbations generated from such PMFs. By comparing these spectra with WMAP7, QUaD, CBI, Boomerang, and ACBAR data sets, we find that the current CMB data set places the strongest constraint at k≃10−2.5k\simeq 10^{-2.5} Mpc−1^{-1} with the upper limit B≲3B\lesssim 3 nG.Comment: 14 pages, 6 figure

    Constraints on the neutrino mass and the primordial magnetic field from the matter density fluctuation parameter σ8\sigma_8

    Full text link
    We have made an analysis of limits on the neutrino mass based upon the formation of large-scale structure in the presence of a primordial magnetic field. We find that a new upper bound on the neutrino mass is possible based upon fits to the cosmic microwave background and matter power spectrum when the existing independent constraints on the matter density fluctuation parameter σ8\sigma_8 and the primordial magnetic field are taken into account.Comment: 6 pages, 2 figures, final version to appear in Phys. Rev. D, to match proof

    Constraints on the Evolution of the Primordial Magnetic Field from the Small-Scale Cosmic Microwave Background Angular Anisotropy

    Full text link
    Recent observations of the cosmic microwave background (CMB) have extended the measured power spectrum to higher multipoles l≳l\gtrsim1000, and there appears to be possible evidence for excess power on small angular scales. The primordial magnetic field (PMF) can strongly affect the CMB power spectrum and the formation of large scale structure. In this paper, we calculate the CMB temperature anisotropies generated by including a power-law magnetic field at the photon last-scattering surface (PLSS). We then deduce an upper limit on the PMF based on our theoretical analysis of the power excess on small angular scales. We have taken into account several important effects such as the modified matter sound speed in the presence of a magnetic field. An upper limit to the field strength of ∣Bλ∣≲|B_\lambda|\lesssim 4.7 nG at the present scale of 1 Mpc is deduced. This is obtained by comparing the calculated theoretical result including the Sunyaev-Zeldovich (SZ) effect with recent observed data on the small-scale CMB anisotropies from the WilkinsonMicrowaveAnisotropyProbeWilkinson Microwave Anisotropy Probe (WMAP), the Cosmic Background Imager (CBI), and the Arcminute Cosmology Bolometer Array Receiver (ACBAR). We discuss several possible mechanisms for the generation and evolution of the PMF.Comment: 27 pages, 4 figures, accepted to ApJ April 10, 200

    Constraints on the Primordial Magnetic Field from σ8\sigma_8

    Full text link
    A primordial magnetic field (PMF) can affect the evolution of density field fluctuations in the early universe.In this paper we constrain the PMF amplitude BλB_\lambda and power spectral index nBn_\mathrm{B} by comparing calculated density field fluctuations with observational data, i.e. the number density fluctuation of galaxies.We show that the observational constraints on cosmological density fluctuations, as parameterized by σ8\sigma_8, lead to strong constraints on the amplitude and spectral index of the PMF.Comment: 11 pages, 1 figure, accepted for publication as Phys. Rev.

    Constraining the Primordial Magnetic Field from Cosmic Microwave Background Anisotropies at Higher Multipoles

    Full text link
    The cosmological magnetic field is one of the important physical quantities which affect strongly the cosmic microwave background (CMB) power spectrum. Recent CMB observations have been extended to higher multipoles l≳l\gtrsim1000, and they resultantly exhibit an excess power than the standard model prediction in cosmological theory which best fits the Wilkinson Microwave Anisotropy Probe (WMAP) data at lower multipoles l≲l\lesssim900. We calculate the CMB temperature anisotropies generated by the power-law magnetic field at the last scattering surface (LSS) in order to remove the tension between theory and observation at higher multipoles and also place an upper limit on primordial magnetic field. In our present calculation we take account of the effect of ionization ratio exactly without approximation. This effect is very crucial to precisely estimate the effect of the magnetic field on CMB power spectrum. We consider both effects of the scalar and vector modes of magnetic field on the CMB anisotropies, where current data are known to be insensitive to the tensor mode which we ignore in the present study. In order to constrain the primordial magnetic field, we evaluate likelihood function of the WMAP data in a wide range of parameters of the magnetic field strength ∣B∣λ|\mathbf{B}|_\lambda and the power-law spectral index nn, along with six cosmological parameters in flat Universe models, using the technique of the Markov Chain Monte Carlo(MCMC) method. We find that the upper limit at 2σ2\sigma C.L. turns out to be ∣Bλ∣≲3.9|\mathbf{B}_\lambda|\lesssim 3.9 nG at 1 Mpc for any nBn_B values, which is obtained by comparing the calculated result including the Sunyaev-Zeldovich(SZ) effect with recent WMAP data of the CMB anisotropies.Comment: 10 pages, 1 figures, 1 table, accepted to ApJ Letter April 13, 200

    How islands stir and fertilize the upper ocean

    Get PDF
    2000 FLORIDA AVE NW, WASHINGTON, USA, DC, 2000

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal
    • …
    corecore