1,439 research outputs found

    Detection of FeO towards SgrB2

    Get PDF
    We have observed the J=5-4 ground state transition of FeO at a frequency of 153 GHz towards a selection of galactic sources. Towards the galactic center source SgrB2, we see weak absorption at approximately the velocity of other features towards this source (62 km s−1^{-1} LSR). Towards other sources, the results were negative as they were also for MgOH(3-2) and FeC(6-5). We tentatively conclude that the absorption seen toward SgrB2 is due to FeO in the hot (∌\sim 500 K) relatively low density absorbing gas known to be present in this line of sight. This is the first (albeit tentative) detection of FeO or any iron--containing molecule in the interstellar gas. Assuming the observed absorption to be due to FeO, we estimate [FeO]/[SiO] to be of order or less than 0.002 and [FeO]/[H2_{2}] of order 310−113 10^{-11}. This is compatible with our negative results in other sources. Our results suggest that the iron liberated from grains in the shocks associated with SgrB2 remains atomic and is not processed into molecular form.Comment: 1 postscrit figure,10 page

    Umklapp scattering of pairs in BCS superconductivity theory

    Full text link
    The BCS theory of superconductivity is extended to recognize pairing of electrons by both normal and umklapp scattering. Application of the variational approach shows that coexistence of normal and umklapp scattering frustrates superconductivity.Comment: 9 pages, 5 figures. to be published in Journal of Physics: Condensed Matte

    The abundances of nitrogen-containing molecules during pre-protostellar collapse

    Get PDF
    We have studied the chemistry of nitrogen--bearing species during the initial stages of protostellar collapse, with a view to explaining the observed longevity of N2H+ and NH3 and the high levels of deuteration of these species. We followed the chemical evolution of a medium comprising gas and dust as it underwent free--fall gravitational collapse. Chemical processes which determine the relative populations of the nuclear spin states of molecules and molecular ions were included explicitly, as were reactions which lead ultimately to the deuteration of the nitrogen--containing species N2H+ and NH3. The freeze-out of `heavy' molecules onto grains was taken into account. We found that the timescale required for the nitrogen--containing species to attain their steady--state values was much larger than the free--fall time and even comparable with the probable lifetime of the precursor molecular cloud. However, it transpires that the chemical evolution of the gas during gravitational collapse is insensitive to its initial composition. If we suppose that the grain--sticking probabilities of atomic nitrogen and oxygen are both less than unity (S less than 0.3), we find that the observed differential freeze--out of nitrogen- and carbon--bearing species can be reproduced by the model of free--fall collapse when a sufficiently large grain radius (a_{g}= 0.5 micron) is adopted. Furthermore, the results of our collapse model are consistent with the high levels of deuteration of N2H+ and NH3 which have been observed in L1544 providing that 0.5<a_{g}<1 micron. We note that the o/p H2D+ ratio and fractional abundance of ortho-H2D+ should be largest when ND3 is most abundant

    Modematching an optical quantum memory

    Full text link
    We analyse the off-resonant Raman interaction of a single broadband photon, copropagating with a classical `control' pulse, with an atomic ensemble. It is shown that the classical electrodynamical structure of the interaction guarantees canonical evolution of the quantum mechanical field operators. This allows the interaction to be decomposed as a beamsplitter transformation between optical and material excitations on a mode-by-mode basis. A single, dominant modefunction describes the dynamics for arbitrary control pulse shapes. Complete transfer of the quantum state of the incident photon to a collective dark state within the ensemble can be achieved by shaping the control pulse so as to match the dominant mode to the temporal mode of the photon. Readout of the material excitation, back to the optical field, is considered in the context of the symmetry connecting the input and output modes. Finally, we show that the transverse spatial structure of the interaction is characterised by the same mode decomposition.Comment: 17 pages, 4 figures. Brief section added treating the transverse spatial structure of the memory interaction. Some references added. A few typos fixe
    • 

    corecore