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BCS theory has to be overhauled: reassurance from numerical survival rate

X. H. Zheng and D. G. Walmsley
Department of Physics and Astronomy, Queen’s University of Belfast, BT7 1NN, N. Ireland∗

(Dated: February 22, 2017)

The BCS theory has conceptual and numerical difficulties. We have previously overhauled it with
a new scheme of phonon-mediated electron pairing that can be expressed analytically in terms of an
empirical pairing survival rate factor, S(q) = 0 or 1/2, depending on phonon momentum, q. Now
we evaluate S(q) numerically entirely from experimental data on normal state electrical resistivity
and on superconducting tunnelling conductance. The empirical and numerical S(q) are reassuringly
close in aluminium and lead and particularly so in two other cases, niobium and tantalum.

PACS numbers: 71.15.Dx, 74.25.Kc, 31.10.+z

I. INTRODUCTION

For nearly 60 years the theory of Bardeen, Cooper and
Schrieffer (BCS) has been universally accepted as pro-
viding the best microscopic description of conventional
superconductivity [1]. However, uncomfortable signs of
strain, both conceptual and numerical, have kept emerg-
ing to question the validity of the theory [2]. The problem
conceptually is that the theory doubly and contradicto-
rily defines electron pair occupancy probabilities when
the electrons from normal and umklapp scattering pro-
cesses compete for the same destination state [3, 4]. Nu-
merically, attempts to calculate superconducting prop-
erties with the BCS theory from first principles have al-
ways been to varying degrees less than successful. For ex-
ample the calculated value of the superconducting tran-
sition temperature, Tc, is found to be persistently too
high when calculated values of the normal state electri-
cal resistivity against temperature, ρ(T ), are reasonable.
Conversely but equivalently, when Tc from calculation is
reasonable, ρ(T ) is found to be too low [5–18].

Previously we found an empirical modification to over-
haul the BCS theory: disallow pairing when normal
and umklapp scattering processes terminate in the same
state. It can be expressed analytically in terms of a
pairing survival rate factor, S(q) = 0 or 1/2, depend-
ing on whether or not the phonon momentum, q, invokes
both normal and umklapp scattering. Encouragingly this
scheme, designed to circumvent the conceptual issue in
BCS, also eases the numerical difficulty. Now the nu-
merical value of Tc is reduced when reasonable values of
ρ(T ) are implemented. It turns out that the introduction
of the empirical S(q) settles the BCS numerical issue in
the cases of lead, aluminium, niobium and tantalum with
high accuracy [3, 4] as it does too in tungsten, iridium,
molybdenum and vanadium [19, 20].

Considering the long established status of the BCS the-
ory, we here seek as reassurance a numerical specifica-
tion of S(q). Starting from the empirical configuration
S(q) = 0 or 1/2 previously asserted we allow its value to
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vary arbitrarily as long as the fit between theory and ex-
periment improves in the superconducting state. While
doing so we retain the exact strength of the electron-
phonon interaction found in the normal state without
change. Previously, in contrast, we merely demonstrated
its consistency with the interaction strength in the su-
perconducting state [3, 4].

Specifically we invert values of experimental ρ(T ) to
determine the electron-phonon interaction strength in
the normal state in the form of a numerically well-
defined atomic pseudopotential, V (r), which if left un-
modified leads to excessively strong superconductivity,
a result consistent with the overwhelming historical ev-
idence. This process involves no questionable physical
theory or uncontrolled computational errors. By way of
modification, we transform V (r) into V (q) in recipro-
cal space and replace V 2(q) with S(q)V 2(q) in the rele-
vant formulation. Then we let computational calculation
determine the values of S(q) automatically, as we aim
to regenerate the experimental tunnelling conductance
data in the superconducting state. We are reassured to
observe the empirical S(q) reemerging from the largely
free-running machine procedure surprisingly well partic-
ularly in the cases of the metals niobium and tantalum.

This article is arranged as follows. In Section II we
review the evidence that led to the proposed scheme to
overhaul the BCS theory. In Section III we consider a
specific case, lead, and obtain an accurate Born-von Kar-
man model for phonon dispersion a task that defied many
previous attempts but is crucial for a successful imple-
mentation of the BCS theory and its possibly improved
version. In Section IV we determine the strength of the
electron-phonon interaction in lead. In Section V we in-
troduce the numerical scheme that overhauls the BCS
theory and numerically determines S(q). In Section VI
we study further cases: aluminium, niobium and tanta-
lum. Brief discussion and conclusions are in Sections VII
and VIII.

II. HISTORICAL BACKGROUND

In the normal state ρ(T ) arises from the electron-
phonon interaction that in turn can be regarded as aris-
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ing from V (r), where r stands for the distance from the
atomic site. In the Eliashberg-Nambu formalism, a re-
fined version of the BCS theory, the superconducting en-
ergy gap arises from the electron-phonon spectral density,
α2F (ν), that also derives from V (r) [21]. It is natural to
expect that we can find both ρ(T ) and α2F (ν) via first
principles calculations with a consistent V (r). Unfortu-
nately each and every previous attempt in this direction
has failed, leaving us with a long trail of evidence in the
literature of an unresolved difficulty.

In an early example, Tomlinson and Carbotte [5] in
1976 evaluated α2F (ν) for lead with the pseudopotential
of Appapillai and Williams which is a particular spec-
ification of the Heine-Abarenkov potential. Ostensible
agreement with tunnelling measurement was considered
to be “very good”, although the longitudinal numerical
peak of the spectral function α2F (ν) at 9 meV is more
than 2 times stronger than the observed tunnelling peak
[21]. Soon after, in 1977 Tomlinson and Carbotte [6] eval-
uated the normal state resistivity ρ(T ) for lead with the
same potential. Between T = 4 and 295 K their ρ(T ) is
about 75% of the observed values, as can be seen more
clearly from the graphic portrayal of the result in 1981
by Eiling and Schilling (see upper part of FIG. 2) [7]. A
similar discrepancy occurred when aluminium was inves-
tigated using the Heine-Abarenkov potential tabulated
by Harrison (where the discrepancy in ρ was somewhat
obscured by a logarithmic presentation) [8–10].

In 1977 Peter, Ashkenazi and Dacorogna studied the
effects of anisotropy on the Tc of niobium [11]. Intrigu-
ingly they found that the electron-phonon coupling con-
stants determined are probably too large and have to
be multiplied by a factor of 0.7 (which means a factor of
0.49 in the electron-phonon-electron interaction) in order
to obtain the observed Tc.

In 1979 Glötzel, Rainer and Schober [12] evaluated
α2F (ν) for vanadium, niobium, tantalum, molybdenum,
tungsten, palladium, platinum and lead. They care-
fully avoided any uncontrolled approximations. To find
phonon dispersion they used published Born-von Karman
fits to the force constants. To estimate the strength of
the electron-phonon interaction they used muffin-tin po-
tentials developed for band structure calculations. The
superconducting transition temperature they found, Tc,
turns out to be 2 to 3 times too high. They show the value
of the Coulomb pseudopotential, µ∗, has a significant ef-
fect on Tc but stick to a reasonable choice µ∗ = 0.13.
They conclude that their careful approach was incapable
of reproducing the observed values of Tc.

In 1987 Al-Lehaibi, Swihart, Butler and Pinski [13]
evaluated both ρ(T ) and α2F (ν) for tantalum also with
a muffin tin potential from band calculation. While ρ(T )
was found to be slightly lower than experimentally ob-
served, α2F (ν) exceeded the tunnelling values signifi-
cantly, giving Tc = 7.01 K (4.5 K experimentally). That
was considered to be a puzzle [13]. A similar puzzle oc-
curred when niobium was investigated [14–16].

In 1996 Savrasov and Savrasov [17] evaluated ρ(T ) and

α2F (ν) for aluminium, vanadium, tantalum, lead, nio-
bium and molybdenum as well as palladium and copper.
Apart from niobium (at T > 300 K) and copper, their
ρ(T ) is lower than the experimental data, significantly so
in the case of lead. However their α2F (ν) still exceeds
experimental values by a factor 2 or 3 in places. To re-
produce observed Tc values they were forced to adjust µ∗

freely. In the case of vanadium and niobium (resistivity
largely correct) they let µ∗ = 0.30 and 0.21, instead of
the respective tunnelling values 0.15 and between 0.11
and 0.16 [18].

In summary, in numerous attempts over many years
values of α2F (ν) are always found to be too high when
ρ(T ) is reasonable (obtained using a pseudopotential
from band calculation) or conversely but equivalently
α2F (ν) reasonable but ρ(T ) too low (using a Heine-
Abarenkov potential). The import is that somehow the
strength of the electron-phonon interaction has to be cur-
tailed in a superconductor.

Aside from these numerical concerns, the BCS the-
ory also has the conceptual difficulty that, in the pres-
ence of both normal and umklapp scattering, the occu-
pation probability of electron pair destination states is
doubly and contradictorily defined [3, 4]. We introduce
an empirical rule to dictate that in a superconductor the
electron-phonon interaction does not pair electrons when
normal and umklapp scattering compete (though each
on its own can lead to superconductivity). This scenario
has an exact proof in the BCS theory, see Appendix in [4]
which shows that electron pairs cannot form under the
circumstances. Superconductivity then arises solely from
residual umklapp scattering of pairs (in real crystalline
systems normal and umklapp scattering always coexist
and the exclusively normal scattering scenario does not
arise). In a series of publications we proved the valid-
ity of this empirical rule: it allows consistent potentials
for the electron-phonon interaction to be used to evaluate
both normal state electrical resistivity and superconduct-
ing tunnelling conductance with high accuracy in lead,
aluminium, niobium and tantalum [3, 4] as well as in
tungsten, iridium, molybdenum and vanadium [19, 20].

III. LEAD: LATTICE DISPERSION

Our procedure starts with phonon dispersion calcula-
tions. We pay some attention to lead phonons. In ad-
dition to the brief review of the topic in [19] we wish
to mention an interesting episode showing how far in-
volved investigators are willing to go in order to get to
the bottom of the problem. In 1989 Chen and Overhauser
named lead as one of the most complicated members
of the simple-metal group, posing a challenge for more
than 25 years up till then [22]. Suggested explanations
in the literature included a third-order perturbation cor-
rection to the electron-ion pseudopotential, conduction-
electron-core exchange, nonlocal pseudopotentials, rela-
tivistic spin-orbit interaction and effective electron-mass
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FIG. 1: Lead phonon properties. Upper: Frequency disper-
sion from neutron scattering by Brockhouse et al (open cir-
cles) and calculation (continuous curve), usual (fcc) reciprocal
site conventions. Lower: Frequency distribution from neutron
scattering by Stedman et al (grey silhouette) and current cal-
culation (histogram).

corrections [22]. Furthermore Chen and Overhauser were
not convinced that Fermi surface distortion, or inapplica-
bility of the usual plane wave presentation of the electron
gas ground state, could be the answer [22].

According to Chen and Overhauser the challenge of the
lead phonons lies mostly in the significant frequency dip
in both the longitudinal and transverse modes towards
the (0, 0, 1) zone-boundary point [22]. They believed
the reason lay in the so-called spin-density waves that
justified the introduction of a 6 × 6 dynamic matrix to
replace the 3× 3 matrix in the Born-von Kármán model.
The Chen-Overhauser matrix depends on a parameter,
A, adjustable for data fitting [22]. Unfortunately an ex-
periment in 1992 by Overhauser and Giebuttowicz was
unable to demonstrate that spin-density waves were rel-
evant to explaining lead phonon dispersion [23].

Brockhouse et al had suggested that the interatomic
forces in lead are of long range and sometimes of alternat-
ing sign and they reached a pessimistic conclusion that
it is not possible to obtain a detailed description of the
force constants within the Born-von Kármán theory [24].
Chen and Overhauser rejected the long-range-force ex-
planation nominally for the reason that it overlooks some
small features in the dispersion curves [22] but apparently

TABLE I: ATOMIC FORCE CONSTANTS OF LEADa

Siteb XX YY ZZ XY XZ YZ
(1, 1, 0) 4.2968 4.2968 -2.1348 4.2968
(2, 0, 0) 1.0331 -0.3902 -0.3902
(2, 1, 1) 0.0655 0.0640 0.0640 0.0433 -0.0433 -0.0217
(2, 2, 0) 0.9091 0.9091 0.8587 0.9091
(3, 1, 0) -0.7909 -0.0551 0.0369 -0.2538
(2, 2, 2) 0.0485 0.0485 0.0485 0.0415 -0.0415 -0.0415
(3, 2, 1) -0.0490 -0.1090 -0.1449 -0.0625 0.0313 0.0208
(4, 0, 0) 1.0401 -0.0272 -0.0272
(4, 1, 1) 0.1078 0.0325 0.0325 0.0323 -0.0323 -0.0081
(4, 2, 0) 0.0302 0.1719 0.2191 0.0809
(3, 3, 2) 0.2143 0.2143 0.0991 0.2131 -0.1420 -0.1420
(4, 2, 2) -0.3560 -0.1125 -0.1125 -0.1832 0.1832 0.0916
(4, 3, 1) 0.0931 -0.0444 -0.2015 0.0315 -0.0105 -0.0079
(5, 2, 1) -0.2048 0.0486 0.0848 -0.0561 0.0280 0.0112
(4, 4, 0) 0.0735 0.0735 0.0888 0.0735
(4, 3, 3) -0.0852 0.0156 0.0156 -0.0703 0.0703 0.0527
(4, 4, 2) 0.0853 0.0853 -0.0157 0.0908 -0.0454 -0.0454
(5, 3, 2) 0.0022 -0.0024 -0.0039 -0.0004 0.0003 0.0002
(6, 2, 0) 0.0229 0.0150 0.0140 0.0113
(5, 4, 1) 0.0236 0.0155 0.0020 0.0191 -0.0048 -0.0038

ain newton/m
bin 1/2 crystal constant

were also motivated by their intention to calculate lead
phonons with the 6 × 6 dynamic matrix. Indeed it does
not appear to be an easy task to take care of the many
peculiar features of lead phonon data, shown as open cir-
cles in the upper part of FIG. 1, with the 3× 3 Born-von
Kármán matrix.

We test the suggestion of Brockhouse in order to leave
no stone unturned within the simplest theory. We deter-
mine the force constants in the Born-von Kármán theory
over 20 neighbour atomic shells. Previously we selectively
sampled the comprehensive neutron scattering data for
lead by Stedman, Almqvist and Nilsson [25] along the
high symmetry directions of the metal. We achieved a
good fit between theory and these selected data [19]. We
observed a 0.3 meV shift of the longitudinal peak of the
theoretical phonon density of states against the experi-
mental peak, together with a similar mismatch between
the theoretical and experimental peaks of α2F (ν) [19].
We suspect that the sampled neutron data may not be
sufficiently representative.

Now we follow the same approach to fit the neutron
scattering data of Brockhouse et al that were measured
specifically in the directions of high symmetry of lead
single crystals [24]. For the convenience of the reader
we outline our procedure of calculation. We employ a
central force model with 40 adjustable parameters for
20 neighbouring atomic shells [26]. We compare Born-
von Kármán calculation and experimental measurement
at the 104 (36 previously) sample phonon frequencies
tabled in [24] too numerous for a least square fitting but
presenting no difficulty when we follow the algorithm of
Hooke and Jeeves [27]. In the pattern search phase of
the algorithm the 40 parameters are perturbed in turn.
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A perturbation is registered as positive if it improves fit-
ting between calculation and measurement, otherwise it
is registered as negative. In the pattern move phase all
the positive perturbations are performed simultaneously,
negative perturbations are performed simultaneously in
the opposite directions, to the extent needed for best fit-
ting. This is repeated until the fit no longer improves.

In the upper part of FIG. 1 we show the result of cal-
culation as continuous curves. We see that the signif-
icant dips of both the longitudinal (L) and transverse
(T) branches of the dispersion curves in the (0, 0, ζ) di-
rection towards the Brillouin zone boundary, marked by
X, are fitted well. Numerous other small features of the
curves are also fitted well, including the minor dip in
the ΓK section of the L branch in the (0, ζ, ζ) direction,
thought to arise from the Kohn effect. In the (0, ζ, 1)
direction (XWX) the Λ branch does not cross the π1 and
π2 branches. It is interesting that in [24] these branches,
apparently from hand drawing to guide the eye, do cross
each other. This hand drawing can be found in popular
text books, see page 441 of [28].

The phonon frequency distribution is defined as:

F (ν) =
1

N

∑
q,`

δ(ν − ~ω`) (1)

where N is the number of atoms in a unit volume, q runs
over the first phonon Brillouin zone, ω` = ω`(q) is the
phonon frequency and ` identifies polarisation [19]. In
Eq. (1) the delta function tells us that the phonons are
counted with respect to their energy (frequency) and so
we have to convert the summation over q into an inte-
gration over ω`. To this end we have to evaluate dq/dω`

from phonon dispersion knowledge. We refrain from dif-
ferentiating numerically the phonon dispersion curves in
the upper part of FIG. 1 because that is prone to sub-
stantial numerical errors and probably is the reason for
the significant longitudinal peak of the lead F (ν) in for
example [29]. Instead we count contributions to F (ν) by
lead phonons once the value of ω` falls into a destined
section of a grid of discrete values of ν [26].

In the lower part of FIG. 1 we compare the experimen-
tal phonon density of states from [25] with our calcula-
tion. Now the theoretical and experimental longitudinal
peaks are much closer compared with those in [19]. In
TABLE I we list values of the atomic force constants.
They are largely similar to the force constants tabled in
[19] though they do not exhibit a clear tendency to cut
off beyond the 17th shell. We are warned that in lead a
good fit in the directions of high symmetry may not en-
sure good enough fit in other directions, as we are going
to see from the following Sections. An early pointer to
this issue can be found in [30].

FIG. 2: Upper: Lead electrical resistivity from experiment
(curve), current calculation (open circles) and Tomlinson-
Carbotte calculation (filled squares). Lower: Lead supercon-
ducting tunnelling conductance from experiment (curve) and
current calculation (open circles).

IV. LEAD: ELECTRON-PHONON
INTERACTION

We calibrate the strength of the electron-phonon inter-
action in lead with measured values of ρ(T ) in the normal
state. In formulation ρ(T ) is determined by the electron-
phonon transport spectral density that by definition is of
the following form:

α2Ftr(ν) =
1

N

∑
q,`

δ(ν − ~ω`)δ(ε− εF )
k · q
k · k

|g`(q)|2 (2)

where q = k′−k is the phonon vector momentum, k and
k′ initial and end momenta of the electron, ε = ε(k′) the
energy of the scattered electron,

g`(q) =

√
~

2Mω`
e` · 〈ψk|∇V |ψk′〉 (3)

measures the strength of the electron-phonon interaction,
with M being mass of the atom, e` phonon polarisation
vector, ψk and ψk′ initial and end wavefunctions of the
electron [19]. We assume a muffin-tin pseudopotential so
that

V (r) = δV cos

(
πr

2r1

)
(4)
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within a constant value when 0 < r < r1, otherwise
it assumes that constant value, δV and r1 measure the
depth and width of the potential well. A programmable
version of Eq. (3) can be found in [19] where we have
removed differentiation upon V (r) with the technique of
integration by parts.

In Eq. (2) α2Ftr(ν) is anisotropic, due to its depen-
dence on k. It becomes isotropic if we assume a spheri-
cal Fermi surface and we have good reasons to do so. We
follow Carbotte and Dynes to include umklapp scatter-
ing in evaluating ρ(T ) [31]. We run q over a sphere of
radius 2kF that conceptually envelops the entire Fermi
surface, kF being the scalar Fermi momentum. This
practice is far from the physical reality that, owing to
the exclusion principle, the electron-phonon interaction
takes place nowhere but over the Fermi surface [32]. It
totally disregards topology of the Fermi surface, saving
that all the possible phonon states have been covered,
but with good numerical accuracy in α2F (ν). Further-
more in Eqs. (2) and (3) there is trade-off between the
values of k and V (r). If the simple pseudopotential in
Eq. (4) turns out to be good enough to fit theoretical and
experimental ρ(T ) accurately, with a spherical Fermi sur-
face, then we have to admit that we have little reason to
elaborate the shape of the surface any further.

We proceed by assuming a spherical Fermi surface
and determine V (r) in Eq. (4) via inversion. We start
with a proxy experimental ρ(T ), generated by the Bloch-
Grüneison formula with high accuracy [33], and seek best
agreement between theory and that experimental data by
varying δV and r1 in Eq. (4) via a simple computer pro-
gram. We find that when δV = −3.008 (in units of Fermi
energy) and r1 = 0.802 (in units of crystal constant) on
average the deviation is 0.15% (against ρ at 295 K). In
the upper part of FIG. 2 we show graphically the theo-
retical (curve) and experimental (open circles) ρ(T ) over
0 ≤ T ≤ 295 K. We also show ρ(T ) found by Tomlinson
and Carbotte (solid squares) for comparison [6].

V. LEAD: NUMERICAL PAIRING SCHEME

In the BCS-Eliashberg-Nambu formalism the tun-
nelling conductance of a superconductor is determined
by the following electron-phonon spectral density:

α2F (ν) =
1

N

∑
q,`

δ(ν − ~ω`)δ(ε− εF )S(q)|g`(q)|2 (5)

which resembles Eq. (2) closely [19]. In Eq. (5) we have
placed a survival rate factor, S(q), which in accordance
with our empirical rule [3, 4] is defined as follows:

S(q) =


0, if k′ ± k is in BZ

1/2, otherwise

(6)

where q = k′ − k and BZ stands for the first phonon
Brillouin zone. The k′ ± k term arises from considera-

FIG. 3: Electron-phonon spectral densities in metallic super-
conductors from experiment (grey silhouettes) and current
calculation (histograms).

tion of scattering from both members of the Cooper pair,
in initial states k and −k, to a final state k′. We as-
sume a spherical Fermi surface, following our treatment
of Eq. (2), so that in Eq. (5) α2F (ν) becomes isotropic.
In this case and with Debye phonons (spherical BZ) we
have S(q) = 0 if q < qD or 4k2F − q2 < q2D, otherwise
S(q) = 1/2, qD stands for Debye momentum. The result-
ing empirical survival rate is shown as the grey rectangles
in FIG. 4.

Now we wish to verify whether this empirical survival
rate in Eq. (6) could arise naturally from physics. We
seek a numerical version of S(q) without a priori restric-
tions to its values apart from a symmetry requirement.
Let (k,−k) and (k′,−k′) be the initial and end states of a
Cooper pair (spin absorbed into k) and h(k′) and h(−k′)
electron occupation probabilities at k′ and −k′. By sym-
metry we must have h(k′) = h(−k′). Consequently we
require S(k′) = S(−k′) or S(q1) = S(q2), where q1 =
k′ − k and q2 = −k′ − k. We further assume S(q1) =
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FIG. 4: The survival rate of the electron-phonon interaction
in metals defined by the empirical rule assuming spherical
Fermi surface and Debye phonons (silhouette) and the explic-
itly calculated values (curves).

S(q1) = S(|k′ − k|) and S(q2) = S(q2) = S(|k′ + k|).
This implies a more strict constraint upon S(q) because
now some information carried by q has been stripped off.
We are going to show that we do not have to relax this
constraint in order to achieve a good fit between theory
and experiment.

In determining S(q) numerically we start from the ex-
perimental values of superconducting tunnelling conduc-
tance in lead, σ, shown as the continuous curve in the
lower part of FIG. 2 [34]. For a spherical Fermi sur-
face the maximum value of q is 2kF . We seek values of
S(q) over a grid of 25 equal divisions between q = 0 and
1.414kF (scattering angle = 90◦). Other values of S(q)
are found from symmetry against scattering angle and
interpolation between mesh points. Initially we let S(q)
assume the shape of the grey rectangles in FIG. 4 demon-
strating the empirical rule. This S(q) leads through
Eq. (5) to α2F (ν) that in turn leads to theoretical val-

ues of tunnelling conductance [19]. To refine the calcu-
lated conductance we apply the Hooke-Jeeves algorithm
to adjust S(q) and eventually reach a good fit of calcu-
lated conductance shown as open circles to the measured
values in the lower part of FIG. 2; here the average de-
viation between observation and computation is a mere
0.18% with respect to the average value of σ so there
is little further benefit in replacing the scalar argument
of S(q) with a vector. En route we also find the theo-
retical α2F (ν) in lead shown as a histogram in FIG. 3.
The experimental α2F (ν), evaluated in house from the
experimental σ, is also shown for comparison as a grey
silhouette in FIG. 3.

In FIG. 4 we show the numerically optimised S(q). We
deduce that the zigzag shape is not due to low numer-
ical resolution because some seemingly straight sections
run across a number of the grid intervals. By and large
the numerical S(q) for Pb in FIG. 4 is tolerably well en-
veloped by the empirical grey rectangle for a spherical
Fermi surface and Debye phonons. The zigzag devia-
tions indicate some remaining inaccuracy in our analy-
sis, possibly in the lead phonon dispersion away from the
directions of high symmetry.

VI. ALUMINIUM, NIOBIUM AND TANTALUM

For purposes of comparison we turn our attention to
some other examples. Aluminium phonons are discussed
in [26]. High quality tunnelling conductance data from
aluminium are not available, mainly because the super-
conductor has a relatively low Tc (1.2 K) [35]. Giaever
measured tunnelling conductance from an Al/Al2O3/Pb
junction in 1960 but without sufficient resolution to allow
further investigation [36]. Moshe Dayan measured crys-
talline and granular Al in 1978 and extracted α2F (ν) [37].
Zasadzinski, Burnell, Wolf and Arnold measured an M-
Al2O3-Al/V proximity structure and extracted α2F (ν)
for both aluminium and vanadium [38]. Khim mea-
sured an Al/Pb proximate junction in 1979 and extracted
α2F (ν) (grey silhouette in FIG. 4) but did not publish
the tunnelling data [39, 40]. From the Khim α2F (ν) data
we find the superconducting energy gap function via the
BCS-Eliashberg-Nambu equation which in turn leads via
the formula in for example [19] to the aluminium tun-
nelling conductance we need as experimental input.

In aluminium we find that to obtain a good fit in the
ρ(T ) inversion we have to assume a Gaussian form for
the atomic pseudopotential:

V (r) = δV exp

[
−
(
r

r1

)2
]

(7)

with δV = −2.716 (in Fermi energy) and r1 = 0.433
(in crystal constant). The proxy experimental resistiv-
ity was derived from the Bloch-Grüneison formula [33],
0 ≤ T ≤ 295 K and the average deviation was 0.90% rela-
tive to ρ at 295 K. The above Gaussian potential leads to
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the S(q) shown in FIG. 4, giving a relatively mild zigzag
compared with the case of lead. Probably the detailed
S(q) structure is due to inaccuracies in the experimental
aluminium tunnelling conductance. Overall it compares
tolerably well with the empirical S(q) shown in FIG. 4
as the grey rectangle. The numerical α2F (ν) in FIG. 3
(histogram) agrees well with the experimental values (sil-
houette).

Niobium phonons are discussed in [19], resistivity is
discussed in [41] and tunnelling conductance reported in
[42]. These lead to δV = −4.142 (in Fermi energy) and
r1 = 1.045 (in crystal constant) in Eq. (4) giving nu-
merical ρ(T ) over 0 ≤ T ≤ 285 K with a deviation of
0.23% relative to ρ at 295 K. Consequently we find S(q)
in FIG. 4 (curve) fits well to its empirical values (rectan-
gle). The numerical α2F (ν) in FIG. 3 (histogram) agrees
well with experimental values (silhouette).

Tantalum phonons are discussed in [43], experimental
resistivity is from the Bloch-Grünison formula [33] and
tunnelling conductance is reported in [39]. These lead
to δV = −4.542 (in Fermi energy) and r1 = 1.058 (in
crystal constant) in Eq. (4) giving numerical ρ(T ) over
0 ≤ T ≤ 285 K with a deviation of 0.54% relative to ρ at
295 K. Consequently we find the numerical S(q) in FIG. 4
(curve) fits well to its empirical values (rectangle). Again,
the numerical α2F (ν) in FIG. 3 (histogram) agrees well
with experimental values (silhouette).

VII. DISCUSSION

In our empirical pairing scheme, expressed in analyti-
cal form in Eq. (6), the survival rate of the pairing inter-
action is determined by the vector wavenumber, q, that
depends on both the frequency of vibration and direction
of propagation of the phonons. In the previous two sec-
tions we have replaced q with q and therefore removed
the effect of phonon direction from consideration. This
is a model chosen for simplicity but it is clear from the
spectral densities in FIG. 3 that it achieves high accuracy.
The message is that in calculating superconducting prop-
erties from first principles the dominant concern should
be to find to what extent the electron-phonon interaction
survives to pair electrons in the superconducting state,
rather than searching for example for some subtlety in
the highly sophisticated topology of the Fermi surface.

Our empirical pairing scheme, in the form of Eq. (6), is
extremely simple. At present it is not entirely clear what
is the exact physical reason or reasons for it to arise.
However it is apparent from FIG. 4 that there must be a

lot of truth in Eq. (6). The numerical outcome of Eq. (6),
with more or less zigzagging (strongly in the case of lead),
is always enveloped reasonably well by the empirical ver-
sion of Eq. (6) (grey rectangles). These curves evolve
automatically from computation, with pairing symmetry
as the only constraint, in the search for a good fit to the
tunnelling conductance data shown for example in the
lower part of FIG. 2. They are straightforward and pro-
vide objective answers to the question: to what extent
should the electron-phonon interaction be curtailed in
order to reproduce the experimental tunnelling conduc-
tance within the BCS-Eliashberg-Nambu theory? There
is little, if any, a priori judgement and/or uncontrolled
approximation required when the curves in FIG. 4 are
generated.

In FIG. 4 the curves compare well with the grey rect-
angles in niobium and tantalum but somewhat less so in
aluminium and lead. The lead problem may lie in the
well-known difficulty in phonon dispersion calculations.
Although in FIG. 1 the calculated dispersion curve in
lead fits experimental sample data well in a few direc-
tions of high symmetry, there is no guarantee of similar
good fitting in other directions. The aluminium problem
on the other hand is thought to arise from deficiencies
in the tunnelling measurements made difficult by the low
transition temperature of the metal.

VIII. CONCLUSIONS

There is little doubt that the BCS theory needs to
be overhauled. The empirical (grey rectangles) and nu-
merical (curves) survival rates in FIG. 4 tell us exactly
how significantly contributions from the electron-phonon
interaction in the normal state have to be curtailed in
order to achieve a good fit between theory and obser-
vation in the superconducting state in lead, aluminium,
niobium and tantalum and therefore overhaul the BCS
theory. This survival rate is little more than a quanti-
tative and accurate reflection of the Mott-Jones theory
of electrical resistivity and BCS theory of superconduc-
tivity. Little a priori conceptual judgement and/or nu-
merical approximation has been involved. There is no
room for a measure such as adjusting the Coulomb pseu-
dopotential µ∗ without justification to reconcile the BCS
theory with the normal state electron-phonon interaction
without the survival rate considerations. This is espe-
cially relevant and perhaps helpful and timely in light of
the recent discovery of Tc = 203 K at high pressures in
the sulfur hydride system [44–48].
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