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Extracting a more realistic pseudopotential for aluminum, lead, niobium and tantalum
from superconductor electron tunnelling spectroscopy data

X. H. Zheng and D. G. Walmsley
Department of Pure and Applied Physics, Queen’s University of Belfast, BT7 1NN, N. Ireland∗

(Dated: 7 September 2011)

Electron tunnelling spectroscopy, developed to extract from superconductive metals the electron-
phonon spectral density, α2F (ν), is found to be a powerful tool also for extracting a more realistic
pseudopotential from such metals. The pseudopotential so extracted has a range of surprising but
physically reasonable properties and regenerates α2F (ν) accurately. Free from most of its long-
standing uncertainties, this pseudopotential may be useful in a number of active fields.

PACS numbers: 71.15.Dx, 74.25.Kc, 31.10.+z

I. INTRODUCTION

We identify and wish to highlight a long overlooked
opportunity that allows us to extract a more realistic
pseudopotential for metals. We illustrate the opportu-
nity by examining two fcc metals (aluminum and lead)
and two bcc metals (niobium and tantalum) from data
already available in the superconducting state.

In simple metals the conduction electrons often ap-
pear to be affected little by the periodic potential of the
atomic lattice so that their behavior is close to that of
free electrons. In many applications the atomic potential
can in such cases be replaced by a pseudopotential which
is weak compared with the actual atomic potential par-
ticularly in the core region of the atoms [1]. Although the
pseudopotential has an idealized theoretical fundation, in
practice it has to be constructed as an ad-hoc model with
a number of parameters adjusted until the outcome fits
experimental observation. This model can be less than
realistic: for example in the empty core model the po-
tential is assumed to vanish within a certain radius from
the atomic site to serve a specific purpose [2].

How can a more realistic pseudopotential be deter-
mined from experimental data? To achieve this we need
to acquaint ourselves with the Eliashberg-Nambu the-
ory of superconductivity [3], a variant of the classic su-
perconductor theory by Bardeen, Cooper and Schrief-
fer (BCS) [4]. Although it allows determination of the
electron-phonon spectral density, α2F (ν), from exper-
imental electron tunnelling conductance data (electron
tunnelling spectroscopy) [5], a first principles calcula-
tion of α2F (ν) is far more difficult and remains to be
achieved. In such a calculation one must know the de-
tails of the atomic core potential in order to estimate
the strength of the electron-phonon interaction. Com-
mon practice has been to use a model pseudopotential,
developed previously to serve some other specific pur-
pose; even in the best cases its use in Eliashberg calcu-
lations leads to α2F (ν) with unduly sharp features and
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high peaks [6–9] both significantly different from obser-
vation. Some authors attribute the problem to the use
of single plane wave electrons [10].

However, to achieve a resolution of the issue one
need not agonize over the lack of detailed knowledge of
δV (r) (pseudopotential variation across the core region
of atoms) or the electron configuration that goes with it.
It is more practical and useful to proceed in the oppo-
site direction, that is to extract δV (r) for the material
by fitting trial forms of δV (r) to the the experimental
α2F (ν). Fitting is here achieved through an application
previously used to fit a trial α2F (ν) with the tunnelling
data [11]. With the detailed form of δV (r) thus extracted
the problem has been turned round: instead of working
with an uncertain δV (r) to determine a plausible α2F (ν),
we have now used the experimentally derived α2F (ν) to
calculate a more realistic δV (r) in precise detail.

We find that the δV (r), extracted directly from the
tunnelling data, has a range of physically reasonable and
somewhat surprising properties. For example in recipro-
cal space δV (r) is converted into δV (q), which is required
to have the so-called long wavelength limit −0.67εF when
q → 0, where εF is the Fermi energy. Our δV (q) does
have this long wavelength limit but, contrary to the pre-
vious guess, is not monotonically increasing from q = 0
and eventually becomes positive when q is close to 2kF ,
kF being the Fermi wavenumber. When we revert to
real space, δV (r) appears to be a sum of a number of
Gaussian-like curves, which justifies the previous practice
in electron energy band calculation, apparently based on
experience and intuition [12, 13]. However, appearance
can be deceiving, for although the Gaussian curves can be
a good starting point for band calculations, it is almost
impossible to recover from them the desired (more real-
istic) δV (q) with the detail on which α2F (ν) sensitively
depends [14].

Our article is arranged as follows. In Section II we dis-
cuss phonon dispersion curves. In Section III we discuss
phonon densities of states and in Section IV the electron-
phonon spectral density. In Section V we extract the
more realistic pseudopotential from the tunnelling data.
We use aluminum as an example in the above discussions.
In Sections VI, VII and VIII we extract the more realistic
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pseudopotential for lead, niobium and tantalum. A brief
discussion of the results is presented in Section IX and
conclusions in Section X.

II. PHONON DISPERSION

For simplicity we assume one atom per primitive cell.
In the Born-von Kármán theory the equation of lattice
vibration is

Mω2uα(q) =
∑

β

Cαβuβ(q) (1)

where uα(q) and uβ(q) are canonical displacements of
atoms, q phonon momentum, α, β = 1, 2, 3 and ω lattice
vibration frequency, to be specified as ω`(q) in accor-
dance with the value of q and phonon polarization,

Cαβ =
1
2

∑

R−R′

∂2V (R−R′)
∂uα(R)∂uβ(R′)

exp[−iq · (R−R′)], (2)

uα(R) and uβ(R′) (to be written as uα and u′β) are
atomic displacements in real space, R and R′ coordinates
of neighboring atomic sites [15]. Letting

V (R−R′) = V (r) (3)

with r = |R−R′|/a, a being the crystal constant and
r = (x2 + y2 + z2)1/2, we have

∂2V

∂u1∂u′1
=

1
a2

[
V ′′(r)

x2

r2
− V ′(r)

y2 + z2

r3

]
,

∂2V

∂u1∂u′2
=

1
a2

[
V ′′(r)

xy

r2
− V ′(r)

xy

r3

]
,

∂2V

∂u1∂u′3
=

1
a2

[
V ′′(r)

xz

r2
− V ′(r)

xz

r3

]
, (4)

∂2V

∂u2∂u′2
=

1
a2

[
V ′′(r)

y2

r2
− V ′(r)

x2 + z2

r3

]
,

∂2V

∂u2∂u′3
=

1
a2

[
V ′′(r)

yz

r2
− V ′(r)

yz

r3

]
,

∂2V

∂u3∂u′3
=

1
a2

[
V ′′(r)

z2

r2
− V ′(r)

x2 + y2

r3

]

which are controlled explicitly by V ′(r) and V ′′(r), the
first and second order derivatives of V (r) with respect
to its argument, respectively, that is in Eq.(4) we can
at most have two independent matrix elements, which is
slightly different from the previous formulation based on

FIG. 1: Phonon dispersion curves for aluminum, open circles
are experimental data by Stedman and Nilsson [18], lines from
theoretical calculation, all in 1012 Hz (~ω` in 4.136 meV),
equation of motion evaluated over 6 shells, crystal symmetry
directions indicated with usual conventions.

symmetry of the lattice [16]. For example in the case of
the bcc lattice in the direction (a, a, 0) we have




α3 α3

α3 α3

β3


 and




α3 γ3

γ3 α3

β3


 (5)

from the current formulation and from [16] respectively.
Woods reported that ω may become imaginary for a bcc
lattice [17] which we have not encountered in our com-
putation.

To take the effect of screening into account, we add the
Thomas-Fermi potential to V (r) in Eq. (3) and find that
the following term

3
2

N

Ω
Q2

ε0

qαqβ

q2 + k2
s

/[
exp

(
TD

T

q

qD

)
− 1

]
(6)

must be added to the matrix elements in Eq. (4), where
N is the number of atoms, Ω volume of the sample, Q nu-
clear charge, ε0 permittivity, ks Thomas-Fermi screening
wavenumber, qD Debye wavenumber, TD and T Debye
temperature and temperature when lattice dispersion is
measured.

When evaluating Eq. (1), r runs over for example 6
shells of neighboring atoms, we treat V ′(r) and V ′′(r)
in Eqs. (4) as parameters, which are adjusted until ω
matches its measured values, shown in FIG. 1 as open
circles [18]. Our adjustment of the parameters is helped
by a popular method of optimization due to Hooke and
Jeeves [19], which was also used extensively in order to
extract α2F (ν) from the tunnelling data. This method,
known as a pattern search method, includes a stage of
pattern search and a stage of pattern moving. At the
first stage values of V ′(r) and V ′′(r) are perturbed in
turn individually and, in accordance with the response
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FIG. 2: Lattice potential V (r) of an aluminum ion, experi-
enced by its neighbors over a distance r, where V is in units of
Fermi energy and r in units of lattice constant, vertical lines
mark atomic shells of the fcc crystal.

of a penalty function, are registered as favorable pertur-
bations or otherwise. At the second stage all the favor-
able perturbations are implemented simultaneously, the
others are implemented in the opposite directions. This
pattern motion can either be one-off or be pushed back
and forth over a shortening range until the penalty func-
tion is minimized. These two steps are repeated to reach
a reasonable fit between theory and experiment, as is
shown in FIG. 1. Parameters in Eq. (6), including Q and
ks, are treated in a similar manner.

We construct the lattice potential, experienced by the
neighbors of an atom, from V ′(r) and V ′′(r) in Eqs. (4),
which are evaluated only at the locations of the neigh-
boring shells of the atom. Between these shells, we inter-
polate V ′(r) with 3-rd order polynomials, whose deriva-
tives match the shell values of V ′′(r). We then integrate
these polynomial sections numerically and find the curve
of V (r) in FIG. 2, assuming V (r) = 0 at the outermost
shell. If we substitute the expression of this curve back
into Eq. (1), we can reproduce accurately the theoret-
ical phonon dispersion curves in FIG. 1. The curve in
FIG. 2 tells us nothing about the atomic potential when
r < 0.707, where literally lies a vast playground for a
theoretician to build a pseudopotential (s)he feels appro-
priate, if (s)he is constrained just by phonon dispersion.
Indeed in [20] the empty core model is verified against
phonon dispersion. Obviously we must be careful if we
wish to borrow this model for the electron-phonon inter-
action in the core region of the atoms.

III. PHONON DENSITIES OF STATES

We have the following expression for the so-called fre-
quency distribution

F (ν) =
Ω

(2π)3
∑

`

1
N

∫
d3q δ(ν − ~ω`) (7)

which is integrated over the first phonon Brillouin zone.
Eq. (7) can be written as

F (ν) =

〈
1

N~
∑

`

Ω
2π2

ω2

v3
D

dω

dω`

〉

~ω`=ν

(8)

where the angle brackets represent the average over
the surface of a unit sphere. In the above expressions
ω` = ω`(q) is the phonon frequency, ` = 1, 2, 3 identifies
phonon polarization, vD Debye velocity and ω = vDq De-
bye frequency (this definition of ω will be used through-
out from now on). We have N~F (ν) as the phonon den-
sity of states which reduces to the Debye density of states
when ω` = ω. In this article ω is always in Hertz (or
rad/s), required by Eq. (1), and ν always in eV (or meV),
required by the Eliashberg-Nambu formulation, and this
ensures the correct units for F (ν) in Eq. (8).

In practice we only have to perform the average in
Eq. (8) over 1/48 of the surface of the unit sphere known
as the irreducible section [21]. The most labor inten-
sive part of the job is of course to find dω/dω`, which
includes generating the phonon dispersion curves, tak-
ing derivatives of the three polarization branches with
respect to q and then inverting the result. An accurate
numerical method of doing so was described by Gilat and
Raubenheimer [21]. Here we describe our method based
on physical understanding of Eq. (8), whose purpose is to
find the range of q with ω`(q) falling into a given range
of phonon frequencies. Let δq and δω be the ranges in q
and ω and

(0, δq, 2δq, ..., N δq)

(0, δω, 2δω, ..., N δω)
(9)

grids of these ranges. Here N represents the number of
grid divisions; N δq and N δω must be large enough to
cover all the possible values of q and ω`. Consider for ex-
ample one of the dispersion curves in FIG. 1 where q and
ω`(q) are in fact discrete. Suppose the total number of q
is j when the condition nδω ≤ ω`(q) < (n + 1)δω is met,
then we have jδq as the number of phonon states falling
into the frequency grid near ω = nδω, giving jδq/δω as
the density of phonon states near ω` = nδω.

In FIG. 3 we show the phonon density of states of
aluminum found with the above method. For compar-
ison we also show the Debye phonon density of states,
whose maximum value is 104/TD, TD being the Debye
temperature, giving 0.24, 0.99, 0.38 and 0.44 as maxima
for aluminum, lead, niobium and tantalum, respectively,
in units of 1/meV. There are small wriggles or kinks in
the densities of states curves of nickel, aluminum and
sodium in [21] which Gilat and Raubenheimer attributed
to computer errors. It is interesting that such kinks are
also evident in FIG. 3, in particular around the nearly
straight top of the transverse peak; these appear to be
genuine features of the phonons. Indeed we find similar
features when we calculate phonon densities of states for
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FIG. 3: Frequency distribution F (ν) for aluminum (his-
togram, in 1/meV) against ν (in meV), Debye distribution
shown as a smooth curve (color online).

nickel and sodium. It is also interesting that in our cal-
culations aluminum and nickel (both fcc crystals) resem-
ble each other closely in their density of states distribu-
tions, whereas the resemblance is not so obvious in [21].
The longitudinal peak in FIG. 3 is not as prominent as
that in [21] but comparable with the experimental peaks
in [18] and [22]. There is just 0.7% difference when we
compare the value of specific heat from the phonon state
distribution in FIG. 3 with the Debye value. The volume
of our calculations is rather modest (29,900 values of q).

IV. ELECTRON-PHONON SPECTRAL
DENSITY

The familiar formula for the electron-phonon spec-
tral density (sometimes known as the Eliashberg or
Eliashberg-Nambu function) is of the following form:

α2F (ν) =

〈
Ω

(2π)3
∑

`

∫
d2k′

|g`(q)|2
~vF

δ(ν − ~ω`)

〉
(10)

where the two dimensional integration with respect to k′

is over the Fermi surface, q = k′−k and the angle brack-
ets represent the average with respect to k, also over the
Fermi surface. In Eq. (10) vF is the Fermi velocity, g`(q)
matrix element of electron-phonon scattering which, in
the case of a spherical Fermi surface, leads to

α2F (ν) =
3
4

(
2
Z

)1/3
m

M

(
TF

TD

)2

× 1
2π

∫ 2π

0

dφ
∑

`

e2
`

ω

ω`

dω

dω`

[
q

qD

δV (q)
εF

]2

~ω`=ν

(11)

where for simplicity we have dropped the angle brackets
in Eq. (10), that is we assume the initial state k has no
effect on α2F (ν) in the above expression. In Eq. (11)

FIG. 4: Electron-phonon spectral density α2F (ν) of alu-
minum (histogram, dimensionless, λ = 0.52) against ν (in
meV), experimental α2F (ν) shown as a smooth curve (color
online, λ = 0.50).

k is placed in the center of the (q, θ, φ) coordinates so
that q = 2kF sin(θ/2) [23], Z is the valency, m and M
electronic and atomic mass, respectively, and TF and εF

Fermi temperature and energy.
The similarities between Eq. (8) and Eq. (11) are ap-

parent, but now we have to weight dω/dω` with e2
` and

δV (q), which means that the histogram in FIG. 3 will
have to be distorted. The force constant matrix in Eq. (1)
can be written as:

UT




Mω2
1

Mω2
2

Mω2
3


 U (12)

where U is an orthogonal unitary matrix and




e1

e2

e3


 = q−1U




q1

q2

q3


 (13)

defines e` in Eq. (11), q2
1 + q2

2 + q2
3 = q2. Apparently

we have e2
1 + e2

2 + e2
3 = 1, that is (e1, e2, e3) is a unit

vector marking phonon polarization, which makes major
differences between the outcomes of Eqs. (8) and (11).
It is well known that transverse phonons do not interact
with electrons [23]. If we restrict the phonon momentum
q in Eq. (10) to the first Brillouin zone, then the trans-
verse peaks in FIG. 3 will all but disappear, resulting in
theoretical values of α2F (ν) comparing poorly with ex-
perimental data. The practice of extending the upper
value of q in Eq. (11) to 2kF [14] brings the transverse
peaks back and makes the longitudinal peak higher rel-
ative to the transverse peaks but the resulting α2F (ν)
still compares poorly with experimental data.
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FIG. 5: More realistic pseudopotential for aluminum, in units
of Fermi energy, in reciprocal space (upper, q in units of kF

and the horizontal line marks δV = 0) and real space (lower, r
in units of lattice constant, vertical lines mark atomic shells).

V. MORE REALISTIC PSEUDOPOTENTIAL

In our derivation we let
∑

R

V (r−R) (14)

be the crystal potential, r being the electronic coor-
dinates and R coordinates of atomic sites. We have
δV (r) = V (r)−V (r1), r = |r−R|, r1 being the value of r
when V (r) can be assumed to have reduced to its asymp-
totic value away from the atomic site. For simplicity we
assume V (r−R) is symmetric with respect to R so that
r1 becomes a constant. In our formulation r1 may be-
come larger than r0, the radius of the Wigner-Seitz cell.
We are reminded that here the atomic potential is ex-
perienced by electrons rather than neighboring atoms so
that V (r) in Eq. (14) is different from V (r) in Eq. (3).
We will remind the reader about the nature of V (r) in
cases where confusion may arise. We have

δV (q) =
3
r3
0

∫ r1

0

δV (r)j0(qr)r2dr (15)

which is the Fourier transform of V (r), j0 being a spher-
ical Bessel function. Conversely we have

δV (r) =
3

q3
D

∫ 2kF

0

δV (q)j0(qr)q2dq (16)

which converts V (q) back into real space. Here we assume
δV (q) vanishes when q > 2kF which will be justified by
our numerical results in the following discussions.

We see from Eq. (11) that α2F (ν) is proportional to
the square of δV (q). This suggests that, with a technique
similar to inverse Fourier transform, we may find a more
realistic atomic potential that leads accurately through
Eq. (11) to the experimentally observed values of α2F (ν).
However in Eq. (11) the relation between ν and q is com-
plicated, so that our technique to extract δV (q) will not
be a straightforward application of inverse Fourier trans-
formation. Instead we use the method of pattern search
described in Section II, modified to suit the nature of the
problem.

Our penalty function for optimization measures the
difference between theoretical and experimental α2F (ν),
shown in FIG. 4 as the histogram and smooth curve re-
spectively. We resolve the atomic potential difference in
reciprocal space into the following Fourier series

δV (q) =
A0

2
+

20∑
n=1

An cos
(

nπq

2kF

)
(17)

considering that in Eq. (11) the value of q never exceeds
2kF . Initially δV (q) and hence A0, A1, ..., A20 are found
from a square atomic potential well (radius = r0) that
leads through the Mott-Jones formula (Einstein phonons)
to the known value of resistivity of the metal [23]. In
about 100 rounds of pattern search and moving the value
of the penalty function continues to drop and the theo-
retical and experimental α2F (ν) become close to each
other, as can be seen from FIG. 4. From the following
formula [10]

λ = 2
∫ ∞

0

α2F (ν)
dν

ν
(18)

we find λ = 0.52 and 0.50 for the theoretical and exper-
imental α2F (ν) respectively. It is not difficult to work
out from FIGs. 3 and 4 the shape of the function α2(ν)
which evidently will not be even close to a constant or a
straight line.

In order to accelerate the above time-consuming pro-
cess of optimization, we notice that, apart from δV (q),
we do not have to change any quantity in Eq. (11) when
we evaluate α2F (ν) again and again in the process of op-
timization. We calculate all the phonon frequencies just
once and store the results for later use, saving a signifi-
cant amount of computation time.

In the upper part of FIG. 5 we show the more real-
istic pseudopotential in reciprocal space, δV (q), reached
after the above process of optimization. In the range
1.5kF < q < 2kF values of δV (q) become vanishingly
small, as a natural outcome of optimization. We have
δV (q) → −0.69εF when q → 0 which also is a natural
outcome, close to the theoretical value −0.67εF for the
long wavelength limit of the pseudopotential.

In the lower part of FIG. 5 we show the more realis-
tic pseudopotential in real space, δV (r), which is found
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FIG. 6: Frequency distribution F (ν) for lead (histogram, in
1/meV) against ν (in meV), Debye distribution shown as a
smooth curve (color online).

FIG. 7: Electron-phonon spectral density α2F (ν) of lead (his-
togram, dimensionless, λ = 1.58) against ν (in meV), ex-
perimental α2F (ν) shown as a smooth curve (color online,
λ = 1.48).

through Eq. (16). This real space potential looks very
much like a Gaussian curve within the first atomic shell.
However, it is very difficult, if not impossible, for us to
construct from intuition a Gaussian curve that would
lead through Eq. (15) to δV (q) in the upper part of FIG. 5
with so much detail. It is worth noting that, beyond the
first atomic shell, the atomic potentials in FIGs. 2 and 5
for ions and electrons respectively might be consistent,
knowing that ions can see a stronger potential on account
of their greater nuclear charges.

VI. LEAD

Theoretical calculation of phonon dispersion with the
Born-von Kármán model for lead has always been a chal-
lenge. The phonon state distribution found by Gilat in

FIG. 8: More realistic pseudopotential for lead, in units of
Fermi energy, in reciprocal space (upper, q in units of kF and
the horizontal line marks δV = 0) and real space (lower, r in
units of crystal constant, vertical lines mark atomic shells).

1965 has a rather unusual feature of a lower longitudi-
nal peak compared with the first transverse peak [24].
In 1967 Stedman, Almqvist and Nilsson measured neu-
tron scattering from lead with exceptionally numerous
q vectors, in order to skip the Born-von Kármán model
and extract the phonon density of states directly from
the scattering data [25]. The longitudinal peak turned
out to be modestly higher than the first transverse peak.
In 1973 Cowley used the Born-von Kármán model and
data in [25] to calculate lead phonon dispersion, with
2,030,100 phonon frequencies within the irreducible sec-
tion, and found again the lead phonon density of states
distribution [26]. The longitudinal peak turned out to
be almost twice as high as the first transverse peak. His
result was used by Tomlinson and Carbotte to calculate
α2F (ν) for lead [6].

We too sample the neutron scattering data from [25]
along the symmetric directions of the lead crystal, more
or less in the places of the open circles in FIG. 1. We fol-
low the procedure described in Section II to find the force
constant matrix, which enables us to calculate phonon
frequencies in all directions in the irreducible section,
which in turn enables us to evaluate the phonon density
of states for lead. We show our result in FIG. 6 which
can be compared with the experimental density of states
distribution in [25]. We have a discrepancy of 2.4%, com-
pared with the Debye value, when we evaluate specific
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FIG. 9: Frequency distribution F (ν) for niobium (histogram,
in 1/meV) against ν (in meV), Debye distribution shown as
a smooth curve (color online).

heat for lead with the curve in FIG. 6, which again arises
from just 29,900 values of phonon momentum.

We follow the procedure in Section V to search for the
more realistic pseudopotential for lead. The initial δV (q)
is from a square potential well (radius = r0) that leads
through the Mott-Jones formula (Einstein phonons) [23]
to the known value of resistivity of lead [23]. It took
about 100 rounds of pattern search and moving for us to
reach the more realistic potential, which leads through
Eq. (11) to α2F (ν) (histogram) in FIG. 7. It is inter-
esting but mostly coincidental that in FIGs. 6 and 7 the
histograms of F (ν) and α2F (ν) appear to be in propor-
tion, giving the impression that α2(ν) could be a con-
stant. Indeed in an early work by Scalapino, Schrieffer
and Wilkins [27] the two peaks in FIG. 7 are approx-
imated with two Lorentzians, weighted by α2(ν1) and
α2(ν2), respectively, ν1 and ν2 being center frequencies of
the first transverse peak and longitudinal peak in FIG. 6.
Trial ratios of α2(ν1)/α2(ν2) = 1 and 0.5 were tested. We
see from FIGs. 6 and 7 good reasons for these ratios to be
tested. But we also see from FIGs. 3 and 4 little reason
to use these ratios in general.

We show the more realistic pseudopotential for lead
in reciprocal space, δV (q), in the upper part of FIG. 8.
We have δV (q) → 0.67εF when q → 0, which is imposed
in this case only as a required physical condition for op-
timization. Without this condition δV (0) will grow to
become positive and large, if the calculation is left to
run for a very long time, probably because of attempts
to suppress the remaining difference between theoretical
and experimental α2F (ν) in FIG. 7. In FIG. 8 δV (q)
becomes vanishingly small when q > 1.5kF . We see from
the lower part of that figure that δV (r), found from δV (q)
through Eq. (16), appears to be a sum of a number of
Gaussian curves.

FIG. 10: Electron-phonon spectral density α2F (ν) of niobium
(histogram, dimensionless, λ = 0.89) against ν (in meV), ex-
perimental α2F (ν) shown as a smooth curve (color online,
λ = 0.93).

FIG. 11: More realistic atomic pseudopotential for niobium,
in units of Fermi energy, in reciprocal space (upper, q in units
of kF and the horizontal line marks δV = 0) and real space
(lower, r in units of lattice constant, vertical lines mark atomic
shells). The scale of the upper part has been extended to ac-
commodate the deeper potential well of niobium in reciprocal
space.
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VII. NIOBIUM

For niobium, the first of two bcc metals, we sample
the data of neutron scattering from [28] by Nakagawa
and Woods. We construct the force constant matrices in
Eqs. (2) and (4) through the procedure of optimization
in Section II. We evaluate Eq. (1) with 29,900 phonon
momenta in the irreducible section which enables us to
evaluate the frequency distribution, F (ν), in Eqs. (7) and
(8). We show the result in FIG. 9, which can be com-
pared with F (ν) in [28]. The first transverse peak and
longitudinal peak are less prominent, compared with the
peaks in [28], and F (ν) leads to a value of specific heat
differing from the Debye value by just 0.5%.

On account of the importance of niobium in super-
conductivity, there have been a number of attempts to
measure α2F (ν) for this metal experimentally. The mea-
surement by Rowell and Robinson can be found from a
number of references for example in [7]. The indepen-
dent measurement by Bostock et al. [29] leads to nega-
tive λ and attracted some discussion in the literature [30].
Kihlstrom, Collins and Park measured α2F (ν) for thin
film niobium as a function of film thickness with results
generally in accord with the Rowell and Robinson mea-
surement [31]. We therefore sample the experimental
α2F (ν) by Rowell and Robinson in [7] in order to find
the more realistic pseudopotential.

We follow the procedure in Section V to optimize
δV (q). We start with a square potential well (radius
= r0), leading through the Mott-Jones formula (Einstein
phonons) to the known resistivity of niobium [23], and
find the initial δV (q) through Eq. (15). Again it takes
about 100 rounds of pattern search and moving for us
to reach the more realistic potential, which is shown in
FIG. 10, where for clarity any numerical value of α2F (ν)
has been averaged with its two immediate neighbors, in
order to smooth out the spike-like features seen in the
middle of the curve in FIG. 7.

In general in FIG. 10 the theoretical α2F (ν) (his-
togram) matches its measured values (smooth curve)
reasonably well towards the long wavelength end. To-
wards the short wavelength end the prominent longitu-
dinal phonon peak in FIG.9, characteristic of calculated
values for a bcc metal, has been attenuated successfully.
The difference between the histogram and the smooth
curve beyond ν ' 23 meV, however, appears to be from
the phonon model. In FIG. 10 the experimental α2F (ν)
cuts off at about 30 meV, but in FIG. 9 the phonon
distribution cuts off at about 27 meV. The phonon dis-
tribution of Nakagawa and Woods in [28] also cuts off at
about 27 meV. The theoretical α2F (ν) in [7] and [32],
also featuring unrealistically significant peaks in both
cases, cuts off earlier compared with the experimental
α2F (ν), although this difference appears to be insignifi-
cant in the presence of the significant peaks. Perhaps the
real phonon distribution in niobium is somewhat different
from the current theoretical values.

In the upper part of FIG. 11 we show the more realistic

FIG. 12: Frequency distribution F (ν) for tantalum (his-
togram, in 1/meV) against ν (in meV), Debye distribution
shown as a smooth curve (color online).

FIG. 13: Electron-phonon spectral density α2F (ν) of tanta-
lum (histogram, dimensionless, λ = 0.61) against ν (in meV),
experimental α2F (ν) shown as a smooth curve (color online,
λ = 0.67).

pseudopotential in reciprocal space, δV (q), which drops
deeper compared with the corresponding pseudopoten-
tials of aluminum and lead in FIGs. 5 and 8. The long
wavelength limit of the potential in FIG. 11 is −0.7εF

which emerges naturally from numerical calculation and
is not far away from the theoretical limit −0.67εF . In the
lower part of FIG. 11 we show the more realistic atomic
potential in real space, δV (r), found from the reciprocal
potential through Eq. (16). This potential again appears
to be a superposition of a number of Gaussian curves.
Note that the differences in the locations of the atomic
shells between FIG. 11 and FIGs. 5 or 8, are due to the
difference between bcc and fcc crystals.



9

FIG. 14: More realistic atomic pseudopotential for tantalum,
in units of Fermi energy, in reciprocal space (upper, q in the
unit of kF and the horizontal line marks δV = 0) and real
space (lower, r in units of lattice constant, vertical lines mark
atomic shells). The scale of the upper part has been extended
to accommodate the deeper potential well of niobium in re-
ciprocal space.

VIII. TANTALUM

In 1964 Woods measured inelastic neutron scattering
from tantalum in the (0, 0, a), (a, a, 0) and (a, a, a) di-
rections and commented that some peculiarities emerged
when the Born-von Kármán model was applied to fit the
neutron data [17]. In 1970 Shen [33] measured the tun-
nelling current from tantalum and inverted the data to
find the experimental α2F (ν). In 1981 Wolf et al. [34]
performed proximity electron tunnelling measurement on
tantalum, yielding experimental α2F (ν) consistent with
that in [33]. In 1987 Al-Lehaibi, Swihart, Butler and
Pinski [8] calculated theoretical α2F (ν) for tantalum,
based on Korringa-Kohn-Rostoker energy bands, Born-
von Kármán phonons and the rigid muffin tin model for
the electron-phonon matrix element. The result features
with significant high peaks not seen from the experimen-
tal α2F (ν).

Here we use the neutron scattering data in [17] to gen-
erate the force constant matrices in Section II via the
optimization procedure described in that section. The
matrices are evaluated over 6 atomic shells. The op-
timization procedure allows us to include more shells,
but the benefit was not apparent. We then proceed to

search for the more realistic pseudopotential, through
the procedure described in Section V. We use the ex-
perimental α2F (ν) in [33] to generate the penalty func-
tion. Initially δV (r) is a square potential (radius =
r0) that leads through the Mott-Jones formula (Ein-
stein phonons) to the known value of resistivity of tan-
talum [23]. We reached the more realistic potential after
about 100 rounds of pattern search and moving.

We see from FIG. 12 that in general our calculated
phonon density of states distribution is consistent with
the distribution determined directly from experiment
in [17], in particular with respect to the sharp and high
longitudinal peak, although the use of arbitrary units
in [17] makes quantitative comparison difficult. The
transverse phonon peaks, however, are less strong in our
distribution. Our distribution leads to just a 0.9% differ-
ence in specific heat compared with the Debye value.

We see from FIG. 13 a fair comparison between the cal-
culated (histogram) and experimental values of α2F (ν)
(smooth curve). In particular the significant α2F (ν)
peaks in [8] have been attenuated. The remaining dif-
ference between the two curves in FIG. 13 appears to
be from our phonon model in Section II, which is based
on a simple idea of the central force and Thomas-Fermi
screening. Perhaps a more sophisticated treatment of the
atomic force is needed, in order to reproduce the experi-
mental α2F (ν) more accurately. For clarity any numeri-
cal value of α2F (ν) in FIG.13 has been averaged with its
two immediate neighbors.

We see from the upper part of FIG. 14 that the more
realistic pseudopotential in reciprocal space, δV (q), has
a long wavelength limit −1.6εF , which is a natural out-
come of optimization, reflecting perhaps the noticeable
difference between the histogram and smooth curve to-
wards the short wavelength end in FIG. 13. We can re-
design the penalty function to impose the theoretical long
wavelength limit, −0.67εF , on δV (q), with other values
of δV (q) being changed slightly as a consequence. Fit-
ting in FIG. 13 might become slightly worse. However at
our current stage of discussion there is no urgent need for
us to do so. We see from the lower part of FIG.14 that
the more realistic pseudopotential in real space, δV (r),
is apparently close to a sum of a number of Gaussian
curves.

IX. DISCUSSION

Like many noticeable or significant advances in physics,
the pseudopotential started as a theoretical convenience
with an element of arbitrariness, demonstrated by for
example the apparently less than realistic empty core
model. In 1952 Parmenter studied electron energy bands
in lithium, atomic potential modelled by a sum of four
Gaussian curves [12]. It has become a routine exercise in
band calculation to employ the so-called Gaussian orbital
in a variational formulation [13], which too is a sum of
Gaussian curves (can be seen as the product of a Gaus-
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sian potential and the usual electron orbital). Now we
see from the lower part of FIGs. 5, 8, 11 and 14 that the
pseudopotential in real space revealed by electron tun-
nelling spectroscopy are indeed close to a sum of Gaus-
sian curves, which is a good indication that the pseudo
potential is not just a theoretical convenience but phys-
ical reality backed by direct experimental detection and
scrutiny.

Further scrutiny may help us to understand supercon-
ductivity. For example in 1989 Kihlstrom, Collins and
Park measured α2F (ν) for niobium films with 30, 45, 80
and 900Å thicknesses [31]. These allow us to reveal for-
mal changes in the core potential as a function of film
thickness. More realistic potential changes may be re-
vealed in association with changes in phonons in thin
films. Another example is lithium, whose transition tem-
perature is less than 0.4mK at ambient pressure [35] and
as high as 20K under pressure [36]. Phonon properties
of lithium under pressure were studied by Kasinathan,
Koepernik, Kunes̆, Rosner and Pickett in 2007 [37]. We
may gain very interesting insight into lithium as a super-
conductor once α2F (ν) of the metal is measured. Iron
becomes a superconductor below 2K at pressures be-
tween 15 and 30GPa [38]. Phonon dispersion of bcc iron
up to 10GPa has been studied by Klotz and Braden in
2000 [39]. This may also help us to understand iron once
we know the experimental α2F (ν) of the metal.

An accurate pseudopotential may further our under-
standing about matters beyond superconductivity, by
serving as a window which allows us to reveal the elec-
tronic structure of metals in a number of fortunate cases.
In 1976 Tomlinson and Carbotte calculated electric re-
sistivity for lead and dilute lead alloys [40]. The formula
employed involves α2F (ν) and the pseudopotential arises
from the empty core model in [41]. In 1981 Pinski, Allen
and Butler calculated electrical and thermal resistivity of
niobium and palladium [42]. The formulae employed also
involve α2F (ν) and the atomic potential arises from the
rigid muffin tin approximation for electron energy band

calculation, which was described by the authors as some-
what uncontrolled, apparently because in band calcula-
tion the electrons must be Bloch waves with many high
harmonic components, compared with the single plane
wave electron in the Eliashberg-Nambu formalism [32].
Now we have the pseudopotential from this very formal-
ism and may expect a more accurate and very interesting
result for electric resistivity.

In this article we have used the single plane wave elec-
tron formulation throughout consistently. We might ex-
pect a consolidation of the pseudopotential with electron
energy band calculations if we switched to Bloch elec-
trons (Leung, Carbotte, Taylor and Leavens made an
attempt in this direction in 1976 in [43]).

X. CONCLUSION

We have shown that in the case of superconducting
metals, for which the experimental electron-phonon spec-
tral density α2F (ν) is available, it is possible to extract
the pseudopotential δV (r), sensed directly by the con-
duction electrons. It is more realistic than previous ad-
hoc models and has a range of surprising but physically
reasonable properties. In particular δV (r) is exposed as
having a form very much like a sum of Gaussian-like con-
tributions at spatial intervals comparable with the lattice
shell spacings. Its Fourier transform, δV (q), though more
structured than expected, shares remarkably consistent
common features among the four sample metals. In gen-
eral δV (q) tends to the theoretical prediction, −0.67εF ,
when q → 0. When q increases it always evolves non-
monotonically via a deep valley (often lower than −3εF )
before ultimately vanishing at and beyond q = 2kF . Can
we expect a similar behavior of δV (q) from other met-
als or alloys, such as the exemplary yet exotic metal
lithium? Can we extract a more realistic δV (r) from
non-superconducting materials? To what extent can we
use it to probe matter? These and other questions invite
further study.
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