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Comparison of Heine-Abarenkov and alternative pseudopotentials
for electron-phonon interaction in aluminium, lead, lithium and calcium

X. H. Zheng and D. G. Walmsley
Department of Physics and Astronomy, Queen’s University of Belfast, BT7 1NN, N. Ireland∗

(Dated: September 27, 2016)

Applying the Heine-Abarenkov pseudopotential to aluminium and lead in both the superconduct-
ing and normal states, Carbotte and coworkers have set a challenging standard befitting the status
of the classic BCS superconductor theory. Upholding the same standard and equipped with the
technique of numerical inversion, we have extracted alternative pseudopotentials from experimental
data with minimal prejudgement that might cloud the physics. The two potentials are broadly con-
sistent in the superconducting state but distinctly different in the normal state. This is an urgent
issue requiring confirmation or refutation in the context of the current search for high temperature
conventional superconductivity.

PACS numbers: 71.15.Dx, 74.25.Kc, 31.10.+z

I. INTRODUCTION

Recently in a remarkable congruence of theory and ex-
periment, high temperature conventional superconduc-
tivity was predicted, discovered and explained in the sul-
fur hydride system under pressure [1–3]. The theory in-
volved is usually known as Eliashberg-Nambu formalism,
an advanced variant of the classic superconductor the-
ory of Bardeen, Cooper and Schrieffer (BCS) [4]. We
foresee rapid further advances, hopefully towards realis-
ing room temperature superconductivity, once the theory
has been refined and verified to eliminate current uncer-
tainties that compromise its predictive power.

In this process recognition should be given to Carbotte
and coworkers who, in applying Eliashberg-Nambu for-
malism creatively at a very early stage of its develop-
ment, set a standard that was, and still is, very challeng-
ing [5–10] They evaluated the electron-phonon interac-
tion, responsible for both superconductivity and normal
state electrical resistivity, quantitatively from first prin-
ciples. They applied the Heine-Abarenkov pseudopoten-
tial, originally designed to reproduce atomic energy lev-
els, to evaluating the electron-phonon spectral density,
α2F (ν), for aluminium and lead in the superconducting
state. As a careful control measure they applied the same
pseudopotential to evaluate electrical resistivity, ρ(T ), for
the same metals. They compared the results of their cal-
culations with previous experimental measurement.

The work of Carbotte and coworkers is of both his-
torical and current significance, not only because it was
pioneering in the field, but also because it revealed prob-
lems that have remained unsolved till this day. It showed
that, while calculated α2F (ν) appears to be reasonably
accurate [7, 8], agreement between calculated and exper-
imental ρ(T ) is not good for example at T = 297 K in
the case of aluminium, and seriously worse in the case of
lead [5]. Naturally we have to ask: are there better pseu-
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dopotentials to describe the electron-phonon interaction
in the metals? We also have to ask: are the pseudopo-
tentials consistent in the two states?

We wish to get to the bottom of the problem. In addi-
tion to confirming the results of Carbotte et al, we pro-
ceed from the point of view that a pseudopotential is
a phenomenological and task-specific entity often with
a narrow mandate. Therefore we no longer apply the
Heine-Abarenkov pseudopotential that was designed for
a purpose other than electron-phonon interaction eval-
uation. Instead we start from experimentally measured
values of α2F (ν) and ρ(T ) and deduce the relevant pseu-
dopotential through a procedure of inversion. We deter-
mine the potential numerically with an accuracy as high
as possible, so that it is dictated entirely by the exper-
imental data and underlying theories; uncertainties are
thus reduced to a minimum. We compare our pseudopo-
tential from inversion with the Heine-Abarenkov poten-
tial and find surprising differences. There are implica-
tions closely germane to the search for high temperature
conventional superconductivity.

This article is arranged as follows: in Section II we
briefly review the history of the application of the Heine-
Abarenkov potential to describe the electron-phonon in-
teraction, in Section III we explain the nature of the
Heine-Abarenkov pseudopotential, in Sections IV and V
we consider applications of pseudopotentials in the super-
conducting and normal states, in Sections VI and VII we
extract alternative pseudopotentials from aluminium and
lead in the superconducting and normal states respec-
tively, in Section VIII we investigate lithium and calcium
as two further examples, brief discussion and conclusions
are presented in Sections IX and X.

II. HISTORICAL REVIEW

The Eliashberg-Nambu formalism quickly surpassed
the original generic BCS theory and enabled McMillan
to devise a procedure of inversion for individual materi-
als that directly links α2F (ν) to data from experimental
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FIG. 1: Electron-phonon spectral densities in aluminium
and lead in the superconducting state, grey silhouettes are
from tunnelling measurement, histograms from the Heine-
Abarenkov pseudopotentials and dark filled squares from al-
ternative pseudopotentials.

tunnelling conductance measurements [13]. Success of
the McMillan procedure immediately led to an upsurge
of further successful research activity, see [8] and refer-
ences therein. The obvious next move was to evaluate
α2F (ν) from first principles and at this stage difficulties
started to emerge.

In 1968 Carbotte and Dynes [8] evaluated α2F (ν) for
aluminium with the Heine-Abarenkov pseudopotential
specified by Harrison [14]. In general their result, shown
as the histogram in the upper part of FIG. 1 (evaluated
in house) is in commendable agreement with the experi-
mental result (grey silhouette).

In 1971 Leavens and Carbotte followed the approach
of Bennett to reveal phonon anisotropy of α2F (ν) also
with the Harrison pseudopotential [9, 10]. This approach
is perturbational, with a spherical Fermi surface and
anisotropy due entirely to phonons. It starts from an
isotropic α2F (ν) which, though claimed to be with some
corrections, appears to be the same as that in [4].

In 1976 Leung, Carbotte, Taylor and Leavens once
more evaluated anisotropic α2F (ν) for aluminium, with
the same Harrison potential but with a non-spherical
Fermi surface. Values of α2F (ν) appear to have changed
little [11].

In 1976 Tomlinson and Carbotte evaluated α2F (ν) for

FIG. 2: Electrical resistivity of aluminium and lead in the
normal state, open circles are experimental values, grey curves
from Heine-Abarenkov pseudopotentials, solid squares from
Tomlinson and Carbotte calculation [12] and dark curves from
pseudopotentials optimised via inversion.

lead in the superconducting state [12]. The electron-
phonon interaction was evaluated with a non-spherical
Fermi surface, with the Heine-Abarenkov pseudopoten-
tial specified by Appapillai and Williams [15]. Agree-
ment between theory and measurement was considered
as “very good” [4], although the longitudinal numerical
peak of α2F (ν) at 9 meV is more than 2 times as strong as
that observed in the experimental tunnelling peak [4, 7].
This excessive peak disappears in our evaluation, with
the same pseudopotential, shown as the histogram in the
lower part of FIG. 1.

When looking at FIG. 1 one can be forgiven for believ-
ing that all is well on the theory front. Application of the
Heine-Abarenkov pseudopotential, specified by Harrison
et al, appears to be just the right way forward to describe
the electron-phonon interaction in metals. It is remark-
able that Carbotte and coworkers did not stop here but
carried on to investigate ρ(T ) of the metals that arises
from the same electron-phonon interactions.

In 1968 Dynes and Carbotte [5] calculated ρ(T ) of
some simple metals from first principles with the Har-
rison pseudopotentials [14]. In the abstract of the publi-
cation it is stated that good agreement is obtained with
experiment for both absolute value and detailed variation
with temperature. However in the text it was acknowl-
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edged that for aluminium the agreement is not particu-
larly good at 297 K. It was also acknowledged that for
lead deviations from experiment are more serious.

In 1973 Truant and Carbotte published further details
of ρ(T ) calculation for aluminium, with two slightly dif-
ferent formulations to smooth out phonon anisotropy [6].
They show their results on a logarithmic scale that re-
veals detailed differences between the two formulations at
low temperatures. We evaluate one of their formulations
and present the outcome on a linear scale, see the grey
line in the upper part in FIG. 2. The numerical and ex-
perimental ρ(T ) indeed deviate significantly at T = 295
K as is remarked in [5].

In 1977 Tomlinson and Carbotte [12] evaluated ρ(T )
in lead with the Heine-Abarenkov pseudopotential spec-
ified by Appapillai and Williams [15]. They evaluated
electron-phonon interactions at just 31 selected points of
the Fermi surface. Their ρ(T ), shown graphically by Eil-
ing and Schilling (filled dark squares in the lower part of
FIG. 2) [16], indeed deviates seriously from experimental
data as is acknowledged in [5]. The situation takes a turn
for the worse when we evaluate the electron-phonon in-
teraction over the entire Fermi surface, see the grey line
in the lower part of FIG. 2.

With the startling contrast in performance of the
Heine-Abarenkov pseudopotential between FIGs. 1 and
2, we have to ask: do we have a consistent pseudopoten-
tial in both the normal and superconducting states?

III. HEINE-ABARENKOV
PSEUDOPOTENTIAL

In its original design the Heine-Abarenkov pseudopo-
tential is of the following form:

V (r) =
∑
`

V`(r)P` (1)

where V`(r) is the model potential, r the distance from
the atom in real space,

P` =
∑̀
m=−`

|Y m` 〉〈Y m` | (2)

the projection operator, with Y m` spherical harmonics,
helping to identify a designated term from the many-
electron wavefunction and then restoring the angular pat-
tern of that term. The radial pattern of the term in
question is a spherical Bessel function over a core range
of r, where V`(r) is assumed to be constant with a value
−A`. By adjusting the value of A` it is possible to repro-
duce the energy level of the atomic valence electron with
the angular pattern Y m` . Usually three energy levels are
reproduced [17, 18].

Animalu and Heine [18] place Eq. (1) in the context of
electron scattering and find the following matrix element

V (q)S(q) = 〈k + q|V (r)|k〉 (3)

FIG. 3: Curves: form factors of the Heine-Abarenkov pseu-
dopotentials in aluminium and lead; open circles: double
Fourier transforms of Heine-Abarenkov pseudopotentials for
numerical accuracy assurance; filled dark squares: alternative
pseudopotentials from superconductivity inversion.

where V (q) is known as the form factor and S(q) a phase
factor, k and k+q mark the initial and end states of the
electron and V (r) is defined in Eq. (1). We are reminded
that in Eq. (1) the atom is assumed static. The electron
is scattered because it encounters a potential well, not
because the atom is vibrating. This process does not
involve phonons and q in Eq. (3) has nothing to do with
phonon momentum.

Numerical values of V (q) in Eq. (3) are shown graph-
ically (continuous curves) in FIG. 3 for aluminium and
lead, data from [15]. Note that the range of q is extensive
(0 ≤ q ≤ 2kF in a solid). Judging from its appearance
V (q) could have been the Fourier transform of some sim-
ple potential well in real space, but a very different story
is told by the following formal inverse Fourier transform:

V (r) =
3

q3D

∫
V (q)j0(qr)q2dq (4)

where qD is the Debye momentum and j0 a spherical
Bessel function. We see from the upper part of FIG. 4
that, in real space, V (r) for aluminium oscillates signif-
icantly over a range close to the atomic site. From the
lower part of FIG. 4 we see that for lead V (r) has, by
contrast, a strong peak at the atomic site, hardly remi-
niscent of a screened Coulomb potential well.
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FIG. 4: Form factors of the Heine-Abarenkov pseudopoten-
tials in aluminium and lead in real space. In a crystal, other
atoms are arranged away from an atom in a serious of spher-
ical shells, with increasing radii as indicated here for the fcc
lattice by the vertical lines.

With the following Fourier transform

V (q) =
3

r30

∫
V (r)j0(qr)r2dr (5)

we can recover V (q) in Eq. (3) from V (r), r0 being the
radius of the Wigner-Seitz cell, for the purpose of numer-
ical accuracy assurance. In FIG. 3 we use the open circles
to present values of V (q) from successive applications of
Eqs. (4) and (5) (double Fourier transform). Apparently
the numerical accuracy is adequate and the unusual fea-
tures of V (r) in FIG. 4, including significant oscillation
and the strong peak towards r = 0, are genuine.

IV. SUPERCONDUCTIVITY

In the Eliashberg-Nambu formalism the strength of
superconductivity is measured by the electron-phonon
spectral density with the following definition:

α2F (ν) =
1

N

∑
q,`

δ(ν − ~ω`)δ(ε− εF )|g`(q)|2 (6)

where N is the number of atoms in a unit volume, q
phonon vector momentum, ` identifies phonon polarisa-

tion, ω` phonon frequency, ε and εF electron and Fermi
energy and

g`(q) =

√
~

2Mω`
e` · 〈k + q|∇V (r)|k〉 (7)

is the matrix element for the electron-phonon interaction,
M being mass of the atom. In Eq. (7) the atomic poten-
tial is differentiated with respect to real space variables,
r, in order to access the effect of atomic displacement on
an electron, and e` arises from phonon polarisation [4].

We transform Eqs. (6) and (7) into a programmable
version [19]. To this end we have to transform summa-
tion over q in Eq. (6) into integration over ω`. There-
fore we have to evaluate dω`/dq from phonon data, the
most laborious part of the numerical work. To start we
have to find a sufficiently accurate relation between ω`
and q (phonon dispersion). We assume the Coulomb
force between atoms depends only on the interatomic
distance (central force model) and calibrate the force
constants with neutron scattering data (Born-von Kar-
man theory). The task is relatively straightforward for
aluminium when, for sufficiently accurate dispersion, we
are able to cut the interatomic force off beyond the 6th
spherical shell formed by other atoms surrounding a given
atom, see [19] for further details. For lead we have to
calibrate the interatomic force over 20 atomic shells, see
FIG. 4 for locations of the shells, see [20] for further de-
tails and an interesting story.

In addition we have to understand the implication of
the term dω`/dq and evaluate it properly. Sometimes
this term becomes vanishingly small, telling us that an
extraordinarily large number of phonon states are ac-
commodated within a small range of phonon frequencies.
This may lead to a spectacular longitudinal peak of the
phonon density of states if we simply differentiate the
dispersion curve numerically. We devised a method to
avoid this difficulty, see [19] for further details.

Equipped with the above numerical technique we eval-
uate α2F (ν) with Eqs. (6) and (7). We repeat the work of
Carbotte and coworkers, with the same Heine-Abarenkov
pseudopotentials, and find results consistent with theirs
in the case of aluminium [10], see the upper part of
FIG. 1. In the case of lead our α2F (ν) has a longitudinal
peak of a reasonable height, in contrast to the spectacu-
larly huge peak in [12], see the lower part of FIG. 1.

V. ELECTRICAL RESISTIVITY

Both superconductivity and normal state electrical re-
sistivity arise afrom the electron-phonon interaction. In-
deed in the normal state the strength of the electron-
phonon interaction is measured by the transport spectral
density with the following definition:

α2
trF (ν) =

1

N

∑
q,`

δ(ν − ~ω`)δ(ε− εF )
k · q
k · k

|g`(q)|2 (8)
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that is very similar to the superconductor spectral func-
tion, α2F (ν) in Eq. (6), including an identical matrix el-
ement, g`(q), for the electron-phonon interaction defined
in Eq. (7). It goes with the following formula

1

τ
= 4π

kBT

~

∫ ∞
0

α2
trF (ν)xdx

(ex − 1)(1− e−x)
(9)

for electron relaxation time in metals that leads through
the Drude formula to ρ(T ), x = ν/kBT [21] with kB be-
ing the Boltzmann constant. Eq. (9) is different from,
though it shares some common features with, the empir-
ical Bloch-Glüneisen formula [22].

We repeat the work of Carbotte and coworkers in [6, 7]
with the same Heine-Abarenkov pseudopotentials. We
apply the Bloch-Grüneisen formula with an appropriate
characteristic temperature, Tρ (= 375 K in the case of
aluminium), that is known to reproduce experimental
ρ(T ) for each material with sufficiently high accuracy
(small circles in the upper part of FIG. 2) [22]. We use
the grey line to show the numerical ρ(T ) from Eqs. (8)
and (9), pseudopotential from [15]. It is higher than the
circles at low T , lower at the high T , and crossing over
at T ∼ 140 K. In [6] the crossing point is at T ∼ 80 K,
reasonably close to ours considering the curves of ρ(T ) in
both cases are largely straight with similar orientations.

In the lower part of FIG. 2 we also use small circles to
present ρ(T ) for lead from the Bloch-Grüneisen formula,
Tρ = 86 K [22]. The theoretical grey line from Eq. (9),
pseudopotential from [15], is much lower than the circles.
It also is considerably lower than the filled dark squares
for the numerical ρ(T ) in [7], arising from the the con-
sidered approach of the authors in evaluating Eq. (8):
they selected just 31 values of q to evaluate Eq. (8) and
carefully avoided places where the Fermi surface does not
exist [7]. It is not clear whether or not they chose the
same 31 values of q when they evaluated α2F (ν) in lead
in the superconductive state in [12].

VI. SUPERCONDUCTIVITY INVERSION

We evaluate Eqs. (6) and (7) with as little prejudge-
ment as possible. In the case of aluminium we start with
the following Gaussian potential:

V (r) = δV exp

[
−
(
r

r1

)2
]

(10)

where δV and r1 are parameters defining the depth and
width of the potential well, to model the core charge
of a lattice atom subject to screening. It leads through
Eqs. (6) and (7) to values of α2F (ν). We can adjust the
values of δV and r1 in Eq. (10) to minimise the difference
between theoretical and experimental data of tunnelling
conductance [19], that is we are seeking the potential via
a procedure of inversion with no physics other than what
is implied by Eqs. (6) and (7).

FIG. 5: Alternative pseudopotentials in reciprocal space for
aluminium (upper) and lead (lower) in the normal (curves)
and superconducting (filled squares) states.

In the case of aluminium the Gaussian potential in
Eq. (10) is specified by δV = −0.966 Ry and r1 = 0.318a,
a being the crystal constant. It leads via Eq. (5) to V (q)
in reciprocal space, with a maximum depth of 0.691 Ry,
see the filled dark squares in the upper part of FIGs. 3
and 5. In the upper part of FIG. 6 we also show V (r) for
aluminium from Eq. (10) as filled dark squares.

In the upper part of FIG. 3 the Gaussian potential in
reciprocal space (filled dark squares) matches the Heine-
Abarenkov pseudopotential for aluminium (curve and
open circles) closely. This explains why, in the upper
part of FIG. 1, values of α2F (ν) from inversion (filled
squares) match those from the Heine-Abarenkov poten-
tial (histogram) so closely. On the other hand, in the
upper part of FIG. 6, the Gaussian potential in real
space (filled squares) is a world apart from the oscillat-
ing Heine-Abarenkov potential in real space in the upper
part of FIG. 4. Apparently it is chance coincidence that
V (r) from Eqs. (1) and (10), so vastly different from each
other in both values and physics, lead to similar V (q) in
reciprocal space.

For completeness we note that in a previous publica-
tion [19] we found V (r) in aluminium in the supercon-
ducting state via a slightly different inversion procedure:
we sought V (q) in reciprocal space, free to vary over the
range 0 ≤ q ≤ 2kF , and then converted it via Eq. (4) into
a potential well in real space, with a maximum depth
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FIG. 6: Upper: alternative pseudopotentials in real space for
aluminium (upper) and lead (lower) in the normal (curves)
and superconducting (filled squares) states, open circles are
from double Fourier transform for numerical accuracy assur-
ance, vertical lines mark radii of atomic shells.

slightly deeper than 1 in Fermi energy, compared with
the current depth ∼1.13 in Fermi energy.

Next we turn our attention to lead. In some instances,
such as here, we have to replace Eq. (10) with the follow-
ing muffin-tin potential:

V (r) = δV cos

(
πr

2r1

)
(11)

where r < r1, otherwise V (r) = 0. For lead in the super-
conducting state we find an optimal fit with δV = −1.052
Ry and r1 = 0.398a, as seen in the continuous curve in
the lower part of FIG. 6. In reciprocal space V (q) has
a maximum depth 0.402 Ry, as seen in the lower part
of FIG. 5. Once more our alternative (muffin-tin) po-
tential is close to the Heine-Abarenkov potential in re-
ciprocal space, see the lower part of FIG. 3, but differs
from it significantly in real space, see the lower part of
FIGs. 4 and 6. In a previous publication [19] we also
found via inversion an alternative pseudopotential for
lead in the superconducting state, with V (r) having a
maximum depth slightly greater than 1.2, compared with
the current depth 1.53, both in units of Fermi energy.

VII. RESISTIVITY INVERSION

Now we evaluate Eqs. (7) and (8) for aluminium with
the alternative pseudopotentials, adjusted to fit the the-
oretical ρ(T ), 0 ≤ T ≤ 295 K, to the experimental data.
We find δV = −2.193 Ry and r1 = 0.395a in Eq. (10),
giving the numerical V (r) in real space, shown as the
curve and small open circles in the upper part of FIG. 6,
and V (q) in reciprocal space, shown as the curve in the
upper part of FIG. 5. These lead to numerical values of
ρ(T ) (dark curve) in the upper part of FIG. 2, on average
differing from experimental values (open circles) by just
0.90% compared with ρ at 295 K.

In a previous publication [21] we first applied the Gaus-
sian potential in Eq. (10) to pilot inversion (δV = −2.414
in Fermi energy and r1 = 0.381a) and then refined the
potential on 26 nodes between r = 0 and 2.45a (radius of
the 12th atomic shell), compared with the current values
δV = −2.193 in Fermi energy and r1 = 0.395a. Average
deviation between numerical and experimental ρ(T ) was
slightly better (0.18% compared with ρ at 295 K).

In the case of lead in the normal state we find δV =
−2.108 Ry and r1 = 0.802a in Eq. (11), V (r) shown
in the lower part of FIG. 6 (curve and open circles),
V (q) shown in the lower part of FIG. 5 (solid curve),
on average numerical ρ(T ) differs from experimental val-
ues by just 0.14% compared with ρ at 295 K. In previ-
ous pilot inversion [21] we had δV = −3.61 in Fermi en-
ergy and r1 = 0.497a, compared with the current values
δV = −3.06 in Fermi energy and r1 = 0.802a, with spec-
tacularly small deviation between theory and experiment
(0.03% relative to ρ at 295 K after potential refinement).

VIII. FURTHER EXAMPLES

In general the Heine-Abarenkov pseudopotential does
not describe the electron-phonon interaction in metals in
the normal state sufficiently accurately. We briefly con-
sider two other examples. In the upper part of FIG. 7
we use small circles to show ρ(T ) in lithium (bcc) from
the Bloch-Grüneisen formula, Tρ = 381 K from fitting to
data in [23] (363 K in [22]). With δV = −0.372 Ry and
r1 = 0.831a in Eq. (11) we find the dark line crossing the
open circles, with an average deviation 0.51% between
theoretical and measured values between T = 0 and 295
K compared with ρ at 295 K. The grey line, from V (q)
tabulated by Appapillai [15], is significantly higher than
the circles. Though not illustrated here, we have evalu-
ated ρ(T ) for sodium (bcc) with the Appapillai V (q) [15]
and find it too is significantly higher than the experimen-
tal values.

In the lower part of FIG. 7 we use small open circles
to show ρ(T ) in calcium (fcc) from the Bloch-Grüneisen
formula, Tρ = 150 K [22]. With δV = −0.394 Ry and
r1 = 0.719a in Eq. (11) we find the dark line crossing
the open circles, with an average deviation between the-
oretical and measured values of 0.39% between T = 0
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FIG. 7: Electrical resistivity of Li and Ca in the normal state,
open circles are experimental values, grey lines are calculated
from V (q) tabulated by Appapillai, dark lines are calculated
from alternative muffin-tin pseudopotentials.
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-k 

FIG. 8: Schematic of a spherical Fermi surface and a pair of
electrons with initial states k and −k. The end states, k′

and −k′, can be accessed via both normal (N) and umklapp
(U) scattering, with different pair occupation probabilities,
causing a dilemma.

and 295 K compared with ρ at 295 K. The grey line is
from V (q) tabulated by Appapillai [15]. It deviates sig-
nificantly from the experimental values of ρ(T ), similar
to the grey line for lead (fcc) in FIG. 2.

IX. DISCUSSION

A genuine issue often leaves a trace in the literature
before it actually attracts seriously focussed attention.
The issue of inconsistent pseudopotentials in the normal
and superconducting states, shown clearly in FIGs. 5 and
6, has been reported sporadically by a considerable num-
ber of authors, see [20] for a brief historical review, in
addition to the review in Section II here.

Previously a single potential for a Coulomb effect, such
as the Heine-Abarenkov pseudopotential, was often sub-
stituted into Eq. (7) which was then applied to Eqs. (6)
and (8) for the superconducting and normal states re-
spectively. This practice has masked the seriousness of
the difficulty, because in Eq. (8) the factor k · q is small
around the centre of the potential well (where q << kF )
in reciprocal space. The well has to be deepened con-
siderably in order to mend the seemingly insignificant
difference between the numerical and experimental ρ(T )
in say the upper part of FIG. 2. FIG. 5 tells us how much
the potential well has to be deepened in aluminium and
lead in the normal state. See [21] to appreciate how much
it has to be deepened in niobium and tantalum.

How does the above issue arise? In short: normal and
umklapp scattering may compete for the same destina-
tion pair states. In normal electron-phonon scattering
the end states from k are restricted to the grey wedge on
the right (angle = 78.1◦, 60.0◦, 51.8◦, ... when valency =
1, 2, 3, ...). They can never reach the wedge on the left.
End states of umklapp scattering, in contrast, do cover
the left wedge [24] and this causes problems.

Specifically in FIG. 8 in normal scattering an electron
in a Cooper pair experiences a transition from k to k′

(other electron from −k to −k′ by symmetry) giving a
pair occupation probability h(k′) = h(−k′). In umk-
lapp scattering the transition is from k to −k′ (other
electron from −k to k′ by symmetry) giving another dis-
tinct pair occupation probability u(k′) = u(−k′). In gen-
eral h(k′) 6= u(k′) because of the different phonons (solid
and dashed arrows) involved in the N and U -processes.
Should we adopt h(k′) or should we adopt u(k′)? That
is the dilemma underlying the current issue [25].

In the original BCS theory the above dilemma mani-
fests itself through a ground state electron wavefunction
that cannot be normalised [25]. Keeping this in mind
we have devised an electron-pairing rule in the BCS the-
ory that allows a consistent pseudopotential to describe
the electron-phonon interaction in both the normal and
superconducting states [21].

X. CONCLUSIONS

The work of Carbotte and coworkers has cast a long
shadow over the field of superconductivity. Following
their success in using the Heine-Abarenkov pseudopoten-
tial to describe the electron-phonon interaction in alu-
minium and lead in the superconducting state, they car-
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ried on to investigate whether the same potentials were
applicable in the normal state. Here, they were the first,
among many other authors, to encounter a difficulty in
the BCS theory. Equipped with alternative better pseu-
dopotentials obtained through numerical inversion, we
show that the problem is serious but can be resolved
through the introduction of a modified electron pairing
rule in the BCS theory. Drozdov et al have very helpfully

measured both superconductivity and normal state elec-
trical resistivity in sulfur hydride and sulfur deuteride [2].
Do we have a consistent pseudopotential to explain their
results in the two states? This is an important question
with its roots in the early work of Carbotte and cowork-
ers and requiring detailed computation using for example
the method of numerical inversion for its answer.
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