1,491 research outputs found
Nonclassical Moments and their Measurement
Practically applicable criteria for the nonclassicality of quantum states are
formulated in terms of different types of moments. For this purpose the moments
of the creation and annihilation operators, of two quadratures, and of a
quadrature and the photon number operator turn out to be useful. It is shown
that all the required moments can be determined by homodyne correlation
measurements. An example of a nonclassical effect that is easily characterized
by our methods is amplitude-squared squeezing.Comment: 12 pages, 6 figure
Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InGaAs
We have investigated InGaAs layers grown by molecular-beam epitaxy on
GaAs(001) by transmission electron microscopy (TEM) and photoluminescence
spectroscopy. InGaAs layers with In-concentrations of 16, 25 and 28 % and
respective thicknesses of 20, 22 and 23 monolayers were deposited at 535 C. The
parameters were chosen to grow layers slightly above and below the transition
between the two- and three-dimensional growth mode. In-concentration profiles
were obtained from high-resolution TEM images by composition evaluation by
lattice fringe analysis. The measured profiles can be well described applying
the segregation model of Muraki et al. [Appl. Phys. Lett. 61 (1992) 557].
Calculated photoluminescence peak positions on the basis of the measured
concentration profiles are in good agreement with the experimental ones.
Evaluating experimental In-concentration profiles it is found that the
transition from the two-dimensional to the three-dimensional growth mode occurs
if the indium content in the In-floating layer exceeds 1.1+/-0.2 monolayers.
The measured exponential decrease of the In-concentration within the cap layer
on top of the islands reveals that the In-floating layer is not consumed during
island formation. The segregation efficiency above the islands is increased
compared to the quantum wells which is explained tentatively by
strain-dependent lattice-site selection of In. In addition, In0.25Ga0.75As
quantum wells were grown at different temperatures between 500 oC and 550 oC.
The evaluation of concentration profiles shows that the segregation efficiency
increases from R=0.65 to R=0.83.Comment: 16 pages, 6 figures, 1 table, sbmitted in Phys. Rev.
Soviet Power and System of Public Education in 1920s: Practice of Experiments in Conditions of Building New Statehood
The state policy of the Soviet government in relation to the system of public education in the initial period of the formation of the Soviet state is considered. The relevance of the study is due to the content and organizational side of the transformations of the Soviet power in the field of public education in the 1920s, which is today of substantive interest for modern education from the applied standpoint of pedagogical practices and innovations in terms of their effectiveness and professional suitability. The authors focus on the general nature of managerial experiments that took place in the school system in the 1920s in the context of the general transformation of the country. A detailed analysis of the organizational foundations of the reform of the education system was carried out, the structure of educational institutions of the period under review was studied, its graphical diagram was built, an overview of the content and overview of school education was made. The novelty of the research lies in the presented subject analysis of the content of curricula and school programs of the 1920s, the construction of a consistent line of reforms in education implemented by the Soviet government in the context of their further effectiveness and historical results. Conclusions are made about the content side of these transformations within the framework of a complex of pedagogical ideas and new practices in education
Universal measurement of quantum correlations of radiation
A measurement technique is proposed which, in principle, allows one to
observe the general space-time correlation properties of a quantized radiation
field. Our method, called balanced homodyne correlation measurement, unifies
the advantages of balanced homodyne detection with those of homodyne
correlation measurements.Comment: 4 pages, 4 figures, small misprints were corrected, accepted to Phys.
Rev. Let
Johnson-Kendall-Roberts theory applied to living cells
Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion
energies of soft slightly deformable material. Little is known about the
validity of this theory on complex systems such as living cells. We have
addressed this problem using a depletion controlled cell adhesion and measured
the force necessary to separate the cells with a micropipette technique. We
show that the cytoskeleton can provide the cells with a 3D structure that is
sufficiently elastic and has a sufficiently low deformability for JKR theory to
be valid. When the cytoskeleton is disrupted, JKR theory is no longer
applicable
Formation and stability of self-assembled coherent islands in highly mismatched heteroepitaxy
We study the energetics of island formation in Stranski-Krastanow growth
within a parameter-free approach. It is shown that an optimum island size
exists for a given coverage and island density if changes in the wetting layer
morphology after the 3D transition are properly taken into account. Our
approach reproduces well the experimental island size dependence on coverage,
and indicates that the critical layer thickness depends on growth conditions.
The present study provides a new explanation for the (frequently found) rather
narrow size distribution of self-assembled coherent islands.Comment: 4 pages, 5 figures, In print, Phys. Rev. Lett. Other related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Dislocation Free Island Formation in Heteroepitaxial Growth: An Equilibrium Study
We investigate the equilibrium properties of strained heteroepitaxial
systems, incorporating the formation and the growth of a wetting film,
dislocation free island formation, and ripening. The derived phase diagram
provides a detailed characterization of the possible growth modes in terms of
the island density, equilibrium island size, and wetting layer thickness.
Comparing our predictions with experimental results we discuss the growth
conditions that can lead to stable islands as well as ripening.Comment: 4 pages, LaTeX, 3 ps figure
Binding mechanism of the model charged dye carboxyfluorescein to hyaluronan/polylysine multilayers
Biopolymer-based multilayers become more and more attractive due to the vast span of biological application they can be used for, e.g., implant coatings, cell culture supports, scaffolds. Multilayers have demonstrated superior capability to store enormous amounts of small charged molecules, such as drugs, and release them in a controlled manner; however, the binding mechanism for drug loading into the multilayers is still poorly understood. Here we focus on this mechanism using model hyaluronan/polylysine (HA/PLL) multilayers and a model charged dye, carboxyfluorescein (CF). We found that CF reaches a concentration of 13 mM in the multilayers that by far exceeds its solubility in water. The high loading is not related to the aggregation of CF in the multilayers. In the multilayers, CF molecules bind to free amino groups of PLL; however, intermolecular CF–CF interactions also play a role and (i) endow the binding with a cooperative nature and (ii) result in polyadsorption of CF molecules, as proven by fitting of the adsorption isotherm using the BET model. Analysis of CF mobility in the multilayers by fluorescence recovery after photobleaching has revealed that CF diffusion in the multilayers is likely a result of both jumping of CF molecules from one amino group to another and movement, together with a PLL chain being bound to it. We believe that this study may help in the design of tailor-made multilayers that act as advanced drug delivery platfor
A tomographic approach to quantum nonlocality
We propose a tomographic approach to study quantum nonlocality in continuous
variable quantum systems. On one hand we derive a Bell-like inequality for
measured tomograms. On the other hand, we introduce pseudospin operators whose
statistics can be inferred from the data characterizing the reconstructed
state, thus giving the possibility to use standard Bell's inequalities.
Illuminating examples are also discussed.Comment: 12 pages, 6 figures, IOP style, to appear in the Special Issue of J
Opt.B connected with Wigner Centennial conference (references added and
updated
- …