25,608 research outputs found

    Infrared measurements of spacecraft glow planned for Spacelab 2

    Get PDF
    A liquid helium cooled infrared telescope (IRT) was to be flown in July 1985 on Spacelab 2. The instrument is designed to measure both diffuse and discrete infrared astronomical sources, including the zodiacal light, galactic, and extragalactic components, as well as to evaluate the induced Orbiter environment. The focal plane contains ten photoconductive detectors covering six broad bands from 2 to 120 microns. Each detector has a 0.5 by 1.0 deg field of view optimized for detection of extended sources of IR radiation. Except for the 2 micron detector, the system noise is limited by the sky background noise. The measurements planned for the IRT use the 1 meter base of the Plasma Diagnostic Package (PDP), an already existing SL 2 experiment, as the glow generating surface. The measurements are repeated changing the position of the PDP, the attitude of the Orbiter, and the ram direction in an effort to remove both the thermal component of the PDP emission and the cosmic background radiation

    Nimbus 6 Doppler processing using the Fairbanks calibration platform

    Get PDF
    A weighted least squares processor is examined. Research conducted in support of the NASA satellite aided Search and Rescue program is presented. An estimated NIMBUS 6 ephemeris, accurate to 1.5-2.5 km and 0.5-2.5 m/s relative to a reference orbit, is obtained during the three day signal transmission period. This suggests updating the knowledge of the relay satellite ephemeris by one reference beacon is needed during the Search and Rescue demonstration

    Analyzing Repeated Measures Marginal Models on Sample Surveys with Resampling Methods

    Get PDF
    Packaged statistical software for analyzing categorical, repeated measures marginal models on sample survey data with binary covariates does not appear to be available. Consequently, this report describes a customized SAS program which accomplishes such an analysis on survey data with jackknifed replicate weights for which the primary sampling unit information has been suppressed for respondent confidentiality. First, the program employs the Macro Language and the Output Delivery System (ODS) to estimate the means and covariances of indicator variables for the response variables, taking the design into account. Then, it uses PROC CATMOD and ODS, ignoring the survey design, to obtain the design matrix and hypothesis test specifications. Finally, it enters these results into another run of CATMOD, which performs automated direct input of the survey design specifications and accomplishes the appropriate analysis. This customized SAS program can be employed, with minor editing, to analyze general categorical, repeated measures marginal models on sample surveys with replicate weights. Finally, the results of our analysis accounting for the survey design are compared to the results of two alternate analyses of the same data. This comparison confirms that such alternate analyses, which do not properly account for the design, do not produce useful results.

    Pion and Quark Annihilation Mechanisms of Dilepton Production in Relativistic Heavy-Ion Collisions

    Full text link
    We revise the pion-pion and quark-quark annihilation mechanisms of dilepton production during relativistic heavy-ion collisions. We focus on the modifications caused by the specific features of intramedium pion states rather than by medium modification of the rho-meson spectral density. The main ingredient emerging in our approach is a form-factor of the multi-pion (multi-quark) system. Replacing the usual delta-function the form-factor plays the role of distribution which, in some sense, "connects" the 4-momenta of the annihilating and outgoing particles. The difference between the c.m.s. velocities attributed to annihilating and outgoing particles is a particular consequence of this replacement and results in the appearance of a new factor in the formula for the dilepton production rate. We obtained that the form-factor of the multi-pion (multi-quark) system causes broadening of the rate which is most pronounced for small invariant masses, in particular, we obtain a growth of the rate for the invariant masses below two masses of the annihilating particles.Comment: 6 pages, 6 figures, LaTex; to appear in Mod. Phys. Lett.

    FMRI resting slow fluctuations correlate with the activity of fast cortico-cortical physiological connections

    Get PDF
    Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections

    A large-area gamma-ray imaging telescope system

    Get PDF
    The concept definition of using the External Tank (ET) of the Space Shuttle as the basis for constructing a large area gamma ray imaging telescope in space is detailed. The telescope will be used to locate and study cosmic sources of gamma rays of energy greater than 100 MeV. Both the telescope properties and the means whereby an ET is used for this purpose are described. A parallel is drawn between those systems that would be common to both a Space Station and this ET application. In addition, those systems necessary for support of the telescope can form the basis for using the ET as part of the Space Station. The major conclusions of this concept definition are that the ET is ideal for making into a gamma ray telescope, and that this telescope will provide a substantial increase in collecting area

    Collective oscillations in disordered neural networks

    Get PDF
    We investigate the onset of collective oscillations in a network of pulse-coupled leaky-integrate-and-fire neurons in the presence of quenched and annealed disorder. We find that the disorder induces a weak form of chaos that is analogous to that arising in the Kuramoto model for a finite number N of oscillators [O.V. Popovych at al., Phys. Rev. E 71} 065201(R) (2005)]. In fact, the maximum Lyapunov exponent turns out to scale to zero for N going to infinite, with an exponent that is different for the two types of disorder. In the thermodynamic limit, the random-network dynamics reduces to that of a fully homogenous system with a suitably scaled coupling strength. Moreover, we show that the Lyapunov spectrum of the periodically collective state scales to zero as 1/N^2, analogously to the scaling found for the `splay state'.Comment: 8.5 Pages, 12 figures, submitted to Physical Review

    Model-guided design of ligand-regulated RNAi for programmable control of gene expression

    Get PDF
    Progress in constructing biological networks will rely on the development of more advanced components that can be predictably modified to yield optimal system performance. We have engineered an RNA-based platform, which we call an shRNA switch, that provides for integrated ligand control of RNA interference (RNAi) by modular coupling of an aptamer, competing strand, and small hairpin (sh) RNA stem into a single component that links ligand concentration and target gene expression levels. A combined experimental and mathematical modelling approach identified multiple tuning strategies and moves towards a predictable framework for the forward design of shRNA switches. The utility of our platform is highlighted by the demonstration of fine-tuning, multi-input control, and model-guided design of shRNA switches with an optimized dynamic range. Thus, shRNA switches can serve as an advanced component for the construction of complex biological systems and offer a controlled means of activating RNAi in disease therapeutics
    corecore