163 research outputs found

    A framework for identifying the recent origins of mobile antibiotic resistance genes

    Get PDF
    Since the introduction of antibiotics as therapeutic agents, many bacterial pathogens have developed resistance to antibiotics. Mobile resistance genes, acquired through horizontal gene transfer, play an important role in this process. Understanding from which bacterial taxa these genes were mobilized, and whether their origin taxa share common traits, is critical for predicting which environments and conditions contribute to the emergence of novel resistance genes. This knowledge may prove valuable for limiting or delaying future transfer of novel resistance genes into pathogens. The literature on the origins of mobile resistance genes is scattered and based on evidence of variable quality. Here, we summarize, amend and scrutinize the evidence for 37 proposed origins of mobile resistance genes. Using state-of-the-art genomic analyses, we supplement and evaluate the evidence based on well-defined criteria. Nineteen percent of reported origins did not fulfill the criteria to confidently assign the respective origin. Of the curated origin taxa, >90% have been associated with infection in humans or domestic animals, some taxa being the origin of several different resistance genes. The clinical emergence of these resistance genes appears to be a consequence of antibiotic selection pressure on taxa that are permanently or transiently associated with the human/domestic animal microbiome

    Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge

    Get PDF
    The emergence and spread of mobile antibiotic resistance genes (ARGs) in pathogens have become a serious threat to global health. Still little is known about where ARGs gain mobility in the first place. Here, we aimed to collect evidence indicating where such\ua0initial mobilization\ua0events of clinically relevant ARGs may have occurred. We found that the majority of previously identified origin species did not carry the mobilizing elements that likely enabled intracellular mobility of the ARGs, suggesting a necessary interplay between different bacteria. Analyses of a broad range of metagenomes revealed that wastewaters and wastewater-impacted environments had by far the highest abundance of both origin species and corresponding mobilizing elements. Most origin species were only occasionally detected in other environments. Co-occurrence of origin species and corresponding mobilizing elements were rare in human microbiota. Our results identify wastewaters and wastewater-impacted environments as plausible arenas for the initial mobilization of resistance genes

    The structure and diversity of human, animal and environmental resistomes

    Get PDF
    Background:Antibiotic resistance genes (ARGs) are widespread but cause problems only when present in pathogens. Environments where selection and transmission of antibiotic resistance frequently take place are likely to be characterized by high abundance and diversity of horizontally transferable ARGs. Large-scale quantitative data on ARGs is, however, lacking for most types of environments, including humans and animals, as is data on resistance genes to potential co-selective agents, such as biocides and metals. This paucity prevents efficient identification of risk environments.Results:We provide a comprehensive characterization of resistance genes, mobile genetic elements (MGEs) and bacterial taxonomic compositions for 864 metagenomes from humans (n = 350), animals (n = 145) and external environments (n = 369), all deeply sequenced using Illumina technology. Environment types showed clear differences in both resistance profiles and bacterial community compositions. Human and animal microbial communities were characterized by limited taxonomic diversity and low abundance and diversity of biocide/metal resistance genes and MGEs but a relatively high abundance of ARGs. In contrast, external environments showed consistently high taxonomic diversity which in turn was linked to high diversity of both biocide/metal resistance genes and MGEs. Water, sediment and soil generally carried low relative abundance and few varieties of known ARGs, whereas wastewater/sludge was on par with the human gut. The environments with the largest relative abundance and/or diversity of ARGs, including genes encoding resistance to last resort antibiotics, were those subjected to industrial antibiotic pollution and a limited set of deeply sequenced air samples from a Beijing smog event.Conclusions:Our study identifies air and antibiotic-polluted environments as under-investigated transmission routes and reservoirs for antibiotic resistance. The high taxonomic and genetic diversity of external environments supports the hypothesis that these also form vast sources of unknown resistance genes, with potential to be transferred to pathogens in the future

    The Association between Insertion Sequences and Antibiotic Resistance Genes

    Get PDF
    Insertion sequences (ISs) are abundant mobile genetic elements on bacterial genomes, responsible for mobilization of many genes, including antibiotic resistance genes (ARGs). As ARGs often occur in similar genetic contexts, understanding which ISs tend to be associated with known ARGs could be a first step toward discovering novel ARGs through predictive or experimental strategies. This could be valuable, as early identification of ARGs in pathogens could facilitate surveillance, confinement actions, molecular diagnostics, and drug development. Here, we present a comprehensive analysis of the association of specific ISs with known ARGs. A large collection of bacterial genomes was used to characterize the immediate context of 2,437 known ARGs and 3,768 ISs. While many ARGs were consistently found close to specific ISs, the contexts around all ISs were more variable. Nevertheless, a subset of individual ISs, as well as tentative composite transposons, showed significant associations with ARGs. These included, e.g., insertion sequences classified as IS6, Tn3, IS4, and IS1 that were not only strongly associated with diverse ARGs but also highly abundant in pathogens. Therefore, we conclude that the context of this subset of ISs and tentative composite transposons would be particularly valuable to discover novel ARGs through modeling or empirical approaches. A set of 1,891 metagenomes were analyzed to identify environments where those ISs commonly associated with ARGs were particularly abundant. The associations found in metagenomes were similar to those found in genomes.IMPORTANCE The emergence and spread of antibiotic resistance genes (ARGs) among pathogens threaten the prevention and treatment of bacterial infections as well as our food production chains. Early knowledge about mobile ARGs that are present in pathogens or that have the potential to become clinically relevant could help mitigate potential negative consequences. Recently, exploring integron gene cassettes was shown to be successful for identifying novel mobilized ARGs, some of which were already circulating in pathogens. Still, only a subset of ARGs is mobilized by integrons, and the contexts of other mobile genetic elements associated with ARGs remain unexplored. This includes insertion sequences (ISs) responsible for the mobilization of many ARGs. Our analyses identified ISs, species, and environments where ARG-IS relationships are particularly strong. This could be a first step to guide the discovery of novel ARGs, while also providing insights into mechanisms involved in the mobilization and transfer of ARGs

    Sensitive and robust gene expression changes in fish exposed to estrogen – a microarray approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vitellogenin is a well established biomarker for estrogenic exposure in fish. However, effects on gonadal differentiation at concentrations of estrogen not sufficient to give rise to a measurable vitellogenin response suggest that more sensitive biomarkers would be useful. Induction of zona pellucida genes may be more sensitive but their specificities are not as clear. The objective of this study was to find additional sensitive and robust candidate biomarkers of estrogenic exposure.</p> <p>Results</p> <p>Hepatic mRNA expression profiles were characterized in juvenile rainbow trout exposed to a measured concentration of 0.87 and 10 ng ethinylestradiol/L using a salmonid cDNA microarray. The higher concentration was used to guide the subsequent identification of generally more subtle responses at the low concentration not sufficient to induce vitellogenin. A meta-analysis was performed with data from the present study and three similar microarray studies using different fish species and platforms. Within the generated list of presumably robust responses, several well-known estrogen-regulated genes were identified. Two genes, confirmed by quantitative RT-PCR (qPCR), fulfilled both the criteria of high sensitivity and robustness; the induction of the genes encoding zona pellucida protein 3 and a nucleoside diphosphate kinase (nm23).</p> <p>Conclusion</p> <p>The cross-species, cross-platform meta-analysis correctly identified several robust responses. This adds confidence to our approach used for identifying candidate biomarkers. Specifically, we propose that analyses of an nm23 gene together with zona pellucida genes may increase the possibilities to detect an exposure to low levels of estrogenic compounds in fish.</p

    GEnView: a gene-centric, phylogeny-based comparative genomics pipeline for bacterial genomes and plasmids

    Get PDF
    Comparing genomic loci of a given bacterial gene across strains and species can provide insights into their evolution, including information on e.g. acquired mobility, the degree of conservation between different taxa or indications of horizontal gene transfer events. While thousands of bacterial genomes are available to date, there is no software that facilitates comparisons of individual gene loci for a large number of genomes. GEnView (Genetic Environment View) is a Python-based pipeline for the comparative analysis of gene-loci in a large number of bacterial genomes, providing users with automated, taxon-selective access to the &gt;800.000 genomes and plasmids currently available in the NCBI Assembly and RefSeq databases, and is able to process local genomes that are not deposited at NCBI, enabling searches for genomic sequences and to analyze their genetic environments through the interactive visualization and extensive metadata files created by GEnView

    Predicting clinical resistance prevalence using sewage metagenomic data

    Get PDF
    Antibiotic resistance surveillance through regional and up-to-date testing of clinical isolates is a foundation for implementing effective empirical treatment. Surveillance data also provides an overview of geographical and temporal changes that are invaluable for guiding interventions. Still, due to limited infrastructure and resources, clinical surveillance data is lacking in many parts of the world. Given that sewage is largely made up of human fecal bacteria from many people, sewage epidemiology could provide a cost-efficient strategy to partly fill the current gap in clinical surveillance of antibiotic resistance. Here we explored the potential of sewage metagenomic data to assess clinical antibiotic resistance prevalence using environmental and clinical surveillance data from across the world. The sewage resistome correlated to clinical surveillance data of invasive Escherichia coli isolates, but none of several tested approaches provided a sufficient resolution for clear discrimination between resistance towards different classes of antibiotics. However, in combination with socioeconomic data, the overall clinical resistance situation could be predicted with good precision. We conclude that analyses of bacterial genes in sewage could contribute to informing management of antibiotic resistance. Karkman et al. explore how well available global sewage metagenomic data can predict clinical resistance prevalence using different models. A combination of sewage metagenomic data with socioeconomic factors predicts overall clinical resistance well, but still has limited ability to discriminate between resistance to different classes of antibiotics.Peer reviewe

    Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities

    Get PDF
    Background New antibiotic resistance determinants are generally discovered too late, long after they have irreversibly emerged in pathogens and spread widely. Early discovery of resistance genes, before or soon after their transfer to pathogens could allow more effective measures to monitor and reduce spread, and facilitate genetics-based diagnostics. Results We modified a functional metagenomics approach followed by in silico filtering of known resistance genes to discover novel, mobilised resistance genes in class 1 integrons in wastewater-impacted environments. We identified an integron-borne gene cassette encoding a protein that conveys high-level resistance against aminoglycosides with a garosamine moiety when expressed in E. coli. The gene is named gar (garosamine-specific aminoglycoside resistance) after its specificity. It contains none of the functional domains of known aminoglycoside modifying enzymes, but bears characteristics of a kinase. By searching public databases, we found that the gene occurs in three sequenced, multi-resistant clinical isolates (two Pseudomonas aeruginosa and one Luteimonas sp.) from Italy and China, respectively, as well as in two food-borne Salmonella enterica isolates from the USA. In all cases, gar has escaped discovery until now. Conclusion To the best of our knowledge, this is the first time a novel resistance gene, present in clinical isolates, has been discovered by exploring the environmental microbiome. The gar gene has spread horizontally to different species on at least three continents, further limiting treatment options for bacterial infections. Its specificity to garosamine-containing aminoglycosides may reduce the usefulness of the newest semisynthetic aminoglycoside plazomicin, which is designed to avoid common aminoglycoside resistance mechanisms. Since the gene appears to be not yet common in the clinics, the data presented here enables early surveillance and maybe even mitigation of its spread.publishedVersio
    • …
    corecore