7,120 research outputs found
Modelling Water Trade in the Southern Murray-Darling Basin
Released in November 2004, the paper uses TERM-Water, a bottoms-up regional CGE model of the Australian economy, to examine the regional effects of expanding trade of irrigation water in the southern Murray- Darling Basin. The study finds that water trading dampens the impact of water allocation cuts on gross regional product (GRP). The benefits of introducing trading within irrigation districts are greater than the further benefits of expanding trade to between these regions. Permitting trade of seasonal allocations allows irrigators to reallocate water in reaction to climatic conditions and water availability - and it is this flexibility that enables GRP reductions to be minimised.southern murray-darling basin, CGE model, irrigation water, water allocation, water trade,
AVIRIS data characteristics and their effects on spectral discrimination of rocks exposed in the Drum Mountains, Utah: Results of a preliminary study
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over a geologically diverse field site and over a nearby calibration site were analyzed and interpreted in efforts to document radiometric and geometric characteristics of AVIRIS, quantify and correct for detrimental sensor phenomena, and evaluate the utility of AVIRIS data for discriminating rock types and identifying their constituent mineralogy. AVIRIS data acquired for these studies exhibit a variety of detrimental artifacts and have lower signal-to-noise ratios than expected in the longer wavelength bands. Artifacts are both inherent in the image data and introduced during ground processing, but most may be corrected by appropriate processing techniques. Poor signal-to-noise characteristics of this AVIRIS data set limited the usefulness of the data for lithologic discrimination and mineral identification. Various data calibration techniques, based on field-acquired spectral measurements, were applied to the AVIRIS data. Major absorption features of hydroxyl-bearing minerals were resolved in the spectra of the calibrated AVIRIS data, and the presence of hydroxyl-bearing minerals at the corresponding ground locations was confirmed by field data
Investigating exploration for deep reinforcement learning of concentric tube robot control
PURPOSE: Concentric tube robots are composed of multiple concentric, pre-curved, super-elastic, telescopic tubes that are compliant and have a small diameter suitable for interventions that must be minimally invasive like fetal surgery. Combinations of rotation and extension of the tubes can alter the robot's shape but the inverse kinematics are complex to model due to the challenge of incorporating friction and other tube interactions or manufacturing imperfections. We propose a model-free reinforcement learning approach to form the inverse kinematics solution and directly obtain a control policy. METHOD: Three exploration strategies are shown for deep deterministic policy gradient with hindsight experience replay for concentric tube robots in simulation environments. The aim is to overcome the joint to Cartesian sampling bias and be scalable with the number of robotic tubes. To compare strategies, evaluation of the trained policy network to selected Cartesian goals and associated errors are analyzed. The learned control policy is demonstrated with trajectory following tasks. RESULTS: Separation of extension and rotation joints for Gaussian exploration is required to overcome Cartesian sampling bias. Parameter noise and Ornstein-Uhlenbeck were found to be optimal strategies with less than 1 mm error in all simulation environments. Various trajectories can be followed with the optimal exploration strategy learned policy at high joint extension values. Our inverse kinematics solver in evaluation has 0.44Â mm extension and [Formula: see text] rotation error. CONCLUSION: We demonstrate the feasibility of effective model-free control for concentric tube robots. Directly using the control policy, arbitrary trajectories can be followed and this is an important step towards overcoming the challenge of concentric tube robot control for clinical use in minimally invasive interventions
The phase shift of an ultrasonic pulse at an oil layer and determination of film thickness
An ultrasonic pulse incident on a lubricating oil film in a machine element will be partially reflected and partially transmitted. The proportion of the wave amplitude reflected, termed the reflection coefficient, depends on the film thickness and the acoustic properties of the oil. When the appropriate ultrasonic frequency is used, the magnitude of the reflection coefficient can be used to determine the oil film thickness. However, the reflected wave has both a real component and an imaginary component, and both the amplitude and the phase are functions of the film thickness. The phase of the reflected wave will be shifted from that of the incident wave when it is reflected. In the present study, this phase shift is explored as the film changes and is evaluated as an alternative means to measure oil film thickness. A quas i-static theoretical model of the reflection response from an oil film has been, developed. This model relates the phase shift to the wave frequency and the film properties. Measurements of reflection coefficient from a static model oil film and also from a rotating journal bearing have been recorded. These have been used to determine the oil film thickness using both amplitude and phase shift methods. In both cases, the results agree closely with independent assessments of the oil film thickness. The model of ultrasonic reflection is further extended to incorporate mass and damping terms. Experiments show that both the mass and the internal damping of the oil films tested in this work have a negligible effect on ultrasonic reflection. A potentially v ery useful application for the simultaneous measurement of reflection coefficient amplitude and phase is that the data can be used to negate the need for a reference. The theoretical relationship between phase and amplitude is fitted to the data. An extrapolation is performed to determine the values of amplitude and phase for an infinitely thick layer. This is equivalent to the reference signal determined by measuring the reflection coefficient directly, but importantly does not require the materials to be separated. This provides a simple and effective means of continuously calibrating the film measurement approach
The Effects of Load Carriage on the Ground Reaction Force Loading Rates and Physiological Responses of Soldiers
Please view abstract in the attached PDF file
The measurement of lubricant-film thickness using ultrasound
Ultrasound is reflected from a liquid layer between two solid bodies. This reflection depends on the ultrasonic frequency, the acoustic properties of the liquid and solid, and the layer thickness. If the wavelength is much greater than the liquid-layer thickness, then the response is governed by the stiffness of the layer. If the wavelength and layer thickness are similar, then the interaction of ultrasound with the layer is controlled by its resonant behaviour. This stiffness governed response and resonant response can be used to determine the thickness of the liquid layer, if the other parameters are known.
In this paper, ultrasound has been developed as a method to determine the thickness of lubricating films in bearing systems. An ultrasonic transducer is positioned on the outside of a bearing shell such that the wave is focused on the lubricant-film layer. The transducer is used to both emit and receive wide-band ultrasonic pulses. For a particular lubricant film, the reflected pulse is processed to give a reflection-coefficient spectrum. The lubricant-film thickness is then obtained from either the layer stiffness or the resonant frequency.
The method has been validated using fluid wedges at ambient pressure between flat and curved surfaces. Experiments on the elastohydrodynamic film formed between a sliding ball and a flat surface were performed. Film-thickness values in the range 50-500 nm were recorded, which agreed well with theoretical film-formation predictions. Similar measurements have been made on the oil film between the balls and outer raceway of a deep-groove ball bearing
Characterizing upward lightning with and without a terrestrial gamma-ray flash
We compare two observations of gamma-rays before, during, and after lightning
flashes initiated by upward leaders from a tower during low-altitude winter
thunderstorms on the western coast of Honshu, Japan. While the two leaders
appear similar, one produced a terrestrial gamma-ray flash (TGF) so bright that
it paralyzed the gamma-ray detectors while it was occurring, and could be
observed only via the weaker flux of neutrons created in its wake, while the
other produced no detectable TGF gamma-rays at all. The ratio between the
indirectly derived gamma-ray fluence for the TGF and the 95% confidence
gamma-ray upper limit for the gamma-ray quiet flash is a factor of
. With the only two observations of this type providing such
dramatically different results -- a TGF probably as bright as those seen from
space and a powerful upper limit -- we recognize that weak, sub-luminous TGFs
in this situation are probably not common, and we quantify this conclusion.
While the gamma-ray quiet flash appeared to have a faster leader and more
powerful initial continuous current pulse than the flash that produced a TGF,
the TGF-producing flash occurred during a weak gamma-ray "glow", while the
gamma-ray quiet flash did not, implying a higher electric field aloft when the
TGF was produced. We suggest that the field in the high-field region approached
by a leader may be more important for whether a TGF is produced than the
characteristics of the leader itself.Comment: 21 pages, 6 figures, accepted for publication by the Journal of
Geophysical Research - Atmosphere
Contestable adulthood: variability and disparity in markers for negotiating the transition to adulthood
Recent research has identified a discreet set of subjective markers that are seen as characterizing the transition to adulthood. The current study challenges this coherence by examining the disparity and variability in young peopleâs selection of such criteria. Four sentence-completion cues corresponding to four differentcontexts in which adult status might be contested were given to 156 British 16- to 17-year-olds. Their qualitative responses were analyzed to
explore patterns whilst capturing some of their richness and diversity. An astonishing amount of variability emerged, both within and between cued contexts.The implications of this variability for how the transition to adulthood is experienced are explored. The argument is made that markers of the transition to adulthood are not merely reflective of the bioâpsychoâsocial development of
young people. Rather, adulthood here is seen as an essentially contested concept,located within the discursive interactional environment in which young people participate
Auto-calibration of ultrasonic lubricant-film thickness measurements
The measurement of oil film thickness in a lubricated component is essential information for performance monitoring and design. It is well established that such measurements can be made ultrasonically if the lubricant film is modelled as a collection of small springs. The ultrasonic method requires that component faces are separated and a reference reflection recorded in order to obtain a reflection coefficient value from which film thickness is calculated. The novel and practically useful approach put forward in this paper and validated experimentally allows reflection coefficient measurement without the requirement for a reference. This involves simultaneously measuring the amplitude and phase of an ultrasonic pulse reflected from a layer. Provided that the acoustic properties of the substrate are known, the theoretical relationship between the two can be fitted to the data in order to yield reflection coefficient amplitude and phase for an infinitely thick layer. This is equivalent to measuring a reference signal directly, but importantly does not require the materials to be separated. The further valuable aspect of this approach, which is demonstrated experimentally, is its ability to be used as a self-calibrating routine, inherently compensating for temperature effects. This is due to the relationship between the amplitude and phase being unaffected by changes in temperature which cause unwanted changes to the incident pulse. Finally, error analysis is performed showing how the accuracy of the results can be optimized. A finding of particular significance is the strong dependence of the accuracy of the technique on the amplitude of reflection coefficient input data used. This places some limitations on the applicability of the technique. Ă© 2008 IOP Publishing Ltd
Autonomous pick-and-place using the dVRK.
PURPOSE: Robotic-assisted partial nephrectomy (RAPN) is a tissue-preserving approach to treating renal cancer, where ultrasound (US) imaging is used for intra-operative identification of tumour margins and localisation of blood vessels. With the da Vinci Surgical System (Sunnyvale, CA), the US probe is inserted through an auxiliary access port, grasped by the robotic tool and moved over the surface of the kidney. Images from US probe are displayed separately to the surgical site video within the surgical console leaving the surgeon to interpret and co-registers information which is challenging and complicates the procedural workflow. METHODS: We introduce a novel software architecture to support a hardware soft robotic rail designed to automate intra-operative US acquisition. As a preliminary step towards complete task automation, we automatically grasp the rail and position it on the tissue surface so that the surgeon is then able to manipulate manually the US probe along it. RESULTS: A preliminary clinical study, involving five surgeons, was carried out to evaluate the potential performance of the system. Results indicate that the proposed semi-autonomous approach reduced the time needed to complete a US scan compared to manual tele-operation. CONCLUSION: Procedural automation can be an important workflow enhancement functionality in future robotic surgery systems. We have shown a preliminary study on semi-autonomous US imaging, and this could support more efficient data acquisition
- âŠ