3,539 research outputs found
Development of reclaimed potable water quality criteria
In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation
Kinetics and thermodynamics of first-order Markov chain copolymerization
We report a theoretical study of stochastic processes modeling the growth of
first-order Markov copolymers, as well as the reversed reaction of
depolymerization. These processes are ruled by kinetic equations describing
both the attachment and detachment of monomers. Exact solutions are obtained
for these kinetic equations in the steady regimes of multicomponent
copolymerization and depolymerization. Thermodynamic equilibrium is identified
as the state at which the growth velocity is vanishing on average and where
detailed balance is satisfied. Away from equilibrium, the analytical expression
of the thermodynamic entropy production is deduced in terms of the Shannon
disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is
recovered in the fully irreversible growth regime. The theory also applies to
Bernoullian chains in the case where the attachment and detachment rates only
depend on the reacting monomer
Force-induced misfolding in RNA
RNA folding is a kinetic process governed by the competition of a large
number of structures stabilized by the transient formation of base pairs that
may induce complex folding pathways and the formation of misfolded structures.
Despite of its importance in modern biophysics, the current understanding of
RNA folding kinetics is limited by the complex interplay between the weak
base-pair interactions that stabilize the native structure and the disordering
effect of thermal forces. The possibility of mechanically pulling individual
molecules offers a new perspective to understand the folding of nucleic acids.
Here we investigate the folding and misfolding mechanism in RNA secondary
structures pulled by mechanical forces. We introduce a model based on the
identification of the minimal set of structures that reproduce the patterns of
force-extension curves obtained in single molecule experiments. The model
requires only two fitting parameters: the attempt frequency at the level of
individual base pairs and a parameter associated to a free energy correction
that accounts for the configurational entropy of an exponentially large number
of neglected secondary structures. We apply the model to interpret results
recently obtained in pulling experiments in the three-helix junction S15 RNA
molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where
force favors the formation of a stable non-native hairpin. The model reproduces
the pattern of unfolding and refolding force-extension curves, the distribution
of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure
Universal Formulae for Percolation Thresholds
A power law is postulated for both site and bond percolation thresholds. The
formula writes , where is the space
dimension and the coordination number. All thresholds up to are found to belong to only three universality classes. For first two
classes for site dilution while for bond dilution. The last one
associated to high dimensions is characterized by for both sites and
bonds. Classes are defined by a set of value for . Deviations
from available numerical estimates at are within and
for high dimensional hypercubic expansions at . The
formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include
Clusterization, frustration and collectivity in random networks
We consider the random Erd{\H o}s--R\'enyi network with enhanced
clusterization and Ising spins at the network nodes. Mutually linked
spins interact with energy . Magnetic properties of the system as dependent
on the clustering coefficient are investigated with the Monte Carlo heat
bath algorithm. For the Curie temperature increases from 3.9 to 5.5
when increases from almost zero to 0.18. These results deviate only
slightly from the mean field theory. For the spin-glass phase appears
below ; this temperature decreases with , on the contrary to the
mean field calculations. The results are interpreted in terms of social
systems.Comment: 10 pages, 6 figures; serious change of result
Stability of the Magnetic Monopole Condensate in three- and four-colour QCD
It is argued that the ground state of three- and four-colour QCD contains a
monopole condensate, necessary for the dual Meissner effect to be the mechanism
of confinement, and support its stability on the grounds that it gives the
off-diagonal gluons an effective mass sufficient to remove the unstable ground
state mode.Comment: jhep.cls, typos corrected, references added, some content delete
Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a configurational entropy rationale
A comparative study is reported on the dynamics of a glass-forming epoxy
resin when the glass transition is approached through different paths: cooling,
compression, and polymerization. In particular, the influence of temperature,
pressure and chemical conversion on the dynamics has been investigated by
dielectric spectroscopy. Deep similarities are found in dynamic properties. A
unified reading of our experimental results for the structural relaxation time
is given in the framework of the Adam-Gibbs theory. The quantitative agreement
with the experimental data is remarkable, joined with physical values of the
fitting parameters. In particular, the fitting function of the isothermal
tau(P) data gives a well reasonable prediction for the molar thermal expansion
of the neat system, and the fitting function of the isobaric-isothermal tau(C)
data under step- polymerization conforms to the prediction of diverging tau at
complete conversion of the system.Comment: 16 pages, 8 figures, from the talk given at the 4th International
Discussion Meeting on Relaxations in Complex Systems (IDMRCS), Hersonissos,
Helaklion, Crete (Greece), 17-23 June 200
Dynamics and Thermodynamics of the Glass Transition
The principal theme of this paper is that anomalously slow, super-Arrhenius
relaxations in glassy materials may be activated processes involving chains of
molecular displacements. As pointed out in a preceding paper with A. Lemaitre,
the entropy of critically long excitation chains can enable them to grow
without bound, thus activating stable thermal fluctuations in the local density
or molecular coordination of the material. I argue here that the intrinsic
molecular-scale disorder in a glass plays an essential role in determining the
activation rate for such chains, and show that a simple disorder-related
correction to the earlier theory recovers the Vogel-Fulcher law in three
dimensions. A key feature of this theory is that the spatial extent of
critically long excitation chains diverges at the Vogel-Fulcher temperature. I
speculate that this diverging length scale implies that, as the temperature
decreases, increasingly large regions of the system become frozen and do not
contribute to the configurational entropy, and thus ergodicity is partially
broken in the super-Arrhenius region above the Kauzmann temperature . This
partially broken ergodicity seems to explain the vanishing entropy at and
other observed relations between dynamics and thermodynamics at the glass
transition.Comment: 20 pages, no figures, some further revision
A graph theoretical analysis of the energy landscape of model polymers
In systems characterized by a rough potential energy landscape, local
energetic minima and saddles define a network of metastable states whose
topology strongly influences the dynamics. Changes in temperature, causing the
merging and splitting of metastable states, have non trivial effects on such
networks and must be taken into account. We do this by means of a recently
proposed renormalization procedure. This method is applied to analyze the
topology of the network of metastable states for different polypeptidic
sequences in a minimalistic polymer model. A smaller spectral dimension emerges
as a hallmark of stability of the global energy minimum and highlights a
non-obvious link between dynamic and thermodynamic properties.Comment: 15 pages, 15 figure
Mean Field and the Single Homopolymer
We develop a statistical model for a confined chain molecule based on a
monomer grand canonical ensemble. The molecule is subject to an external
chemical potential, a backbone interaction, and an attractive interaction
between all monomers. Using a Gaussian variable formalism and a mean field
approximation, we analytically derive a minimum principle from which we can
obtain relevant physical quantities, such as the monomer density, and we
explore the limit in which the chain is subject to a tight confinement. Through
a numerical implementation of the minimization process we show how we can
obtain density profiles in three dimensions for arbitraty potentials, and we
test the limits of validity of the theory.Comment: 15 pages, 7 figure
- …