3,539 research outputs found

    Development of reclaimed potable water quality criteria

    Get PDF
    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation

    Kinetics and thermodynamics of first-order Markov chain copolymerization

    Full text link
    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer

    Force-induced misfolding in RNA

    Get PDF
    RNA folding is a kinetic process governed by the competition of a large number of structures stabilized by the transient formation of base pairs that may induce complex folding pathways and the formation of misfolded structures. Despite of its importance in modern biophysics, the current understanding of RNA folding kinetics is limited by the complex interplay between the weak base-pair interactions that stabilize the native structure and the disordering effect of thermal forces. The possibility of mechanically pulling individual molecules offers a new perspective to understand the folding of nucleic acids. Here we investigate the folding and misfolding mechanism in RNA secondary structures pulled by mechanical forces. We introduce a model based on the identification of the minimal set of structures that reproduce the patterns of force-extension curves obtained in single molecule experiments. The model requires only two fitting parameters: the attempt frequency at the level of individual base pairs and a parameter associated to a free energy correction that accounts for the configurational entropy of an exponentially large number of neglected secondary structures. We apply the model to interpret results recently obtained in pulling experiments in the three-helix junction S15 RNA molecule (RNAS15). We show that RNAS15 undergoes force-induced misfolding where force favors the formation of a stable non-native hairpin. The model reproduces the pattern of unfolding and refolding force-extension curves, the distribution of breakage forces and the misfolding probability obtained in the experiments.Comment: 28 pages, 11 figure

    Universal Formulae for Percolation Thresholds

    Full text link
    A power law is postulated for both site and bond percolation thresholds. The formula writes pc=p0[(d1)(q1)]ad bp_c=p_0[(d-1)(q-1)]^{-a}d^{\ b}, where dd is the space dimension and qq the coordination number. All thresholds up to dd\rightarrow \infty are found to belong to only three universality classes. For first two classes b=0b=0 for site dilution while b=ab=a for bond dilution. The last one associated to high dimensions is characterized by b=2a1b=2a-1 for both sites and bonds. Classes are defined by a set of value for {p0; a}\{p_0; \ a\}. Deviations from available numerical estimates at d7d \leq 7 are within ±0.008\pm 0.008 and ±0.0004\pm 0.0004 for high dimensional hypercubic expansions at d8d \geq 8. The formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include

    Clusterization, frustration and collectivity in random networks

    Full text link
    We consider the random Erd{\H o}s--R\'enyi network with enhanced clusterization and Ising spins s=±1s=\pm 1 at the network nodes. Mutually linked spins interact with energy JJ. Magnetic properties of the system as dependent on the clustering coefficient CC are investigated with the Monte Carlo heat bath algorithm. For J>0J>0 the Curie temperature TcT_c increases from 3.9 to 5.5 when CC increases from almost zero to 0.18. These results deviate only slightly from the mean field theory. For J<0J<0 the spin-glass phase appears below TSGT_{SG}; this temperature decreases with CC, on the contrary to the mean field calculations. The results are interpreted in terms of social systems.Comment: 10 pages, 6 figures; serious change of result

    Stability of the Magnetic Monopole Condensate in three- and four-colour QCD

    Get PDF
    It is argued that the ground state of three- and four-colour QCD contains a monopole condensate, necessary for the dual Meissner effect to be the mechanism of confinement, and support its stability on the grounds that it gives the off-diagonal gluons an effective mass sufficient to remove the unstable ground state mode.Comment: jhep.cls, typos corrected, references added, some content delete

    Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a configurational entropy rationale

    Full text link
    A comparative study is reported on the dynamics of a glass-forming epoxy resin when the glass transition is approached through different paths: cooling, compression, and polymerization. In particular, the influence of temperature, pressure and chemical conversion on the dynamics has been investigated by dielectric spectroscopy. Deep similarities are found in dynamic properties. A unified reading of our experimental results for the structural relaxation time is given in the framework of the Adam-Gibbs theory. The quantitative agreement with the experimental data is remarkable, joined with physical values of the fitting parameters. In particular, the fitting function of the isothermal tau(P) data gives a well reasonable prediction for the molar thermal expansion of the neat system, and the fitting function of the isobaric-isothermal tau(C) data under step- polymerization conforms to the prediction of diverging tau at complete conversion of the system.Comment: 16 pages, 8 figures, from the talk given at the 4th International Discussion Meeting on Relaxations in Complex Systems (IDMRCS), Hersonissos, Helaklion, Crete (Greece), 17-23 June 200

    Dynamics and Thermodynamics of the Glass Transition

    Full text link
    The principal theme of this paper is that anomalously slow, super-Arrhenius relaxations in glassy materials may be activated processes involving chains of molecular displacements. As pointed out in a preceding paper with A. Lemaitre, the entropy of critically long excitation chains can enable them to grow without bound, thus activating stable thermal fluctuations in the local density or molecular coordination of the material. I argue here that the intrinsic molecular-scale disorder in a glass plays an essential role in determining the activation rate for such chains, and show that a simple disorder-related correction to the earlier theory recovers the Vogel-Fulcher law in three dimensions. A key feature of this theory is that the spatial extent of critically long excitation chains diverges at the Vogel-Fulcher temperature. I speculate that this diverging length scale implies that, as the temperature decreases, increasingly large regions of the system become frozen and do not contribute to the configurational entropy, and thus ergodicity is partially broken in the super-Arrhenius region above the Kauzmann temperature TKT_K. This partially broken ergodicity seems to explain the vanishing entropy at TKT_K and other observed relations between dynamics and thermodynamics at the glass transition.Comment: 20 pages, no figures, some further revision

    A graph theoretical analysis of the energy landscape of model polymers

    Full text link
    In systems characterized by a rough potential energy landscape, local energetic minima and saddles define a network of metastable states whose topology strongly influences the dynamics. Changes in temperature, causing the merging and splitting of metastable states, have non trivial effects on such networks and must be taken into account. We do this by means of a recently proposed renormalization procedure. This method is applied to analyze the topology of the network of metastable states for different polypeptidic sequences in a minimalistic polymer model. A smaller spectral dimension emerges as a hallmark of stability of the global energy minimum and highlights a non-obvious link between dynamic and thermodynamic properties.Comment: 15 pages, 15 figure

    Mean Field and the Single Homopolymer

    Full text link
    We develop a statistical model for a confined chain molecule based on a monomer grand canonical ensemble. The molecule is subject to an external chemical potential, a backbone interaction, and an attractive interaction between all monomers. Using a Gaussian variable formalism and a mean field approximation, we analytically derive a minimum principle from which we can obtain relevant physical quantities, such as the monomer density, and we explore the limit in which the chain is subject to a tight confinement. Through a numerical implementation of the minimization process we show how we can obtain density profiles in three dimensions for arbitraty potentials, and we test the limits of validity of the theory.Comment: 15 pages, 7 figure
    corecore