Abstract

A power law is postulated for both site and bond percolation thresholds. The formula writes pc=p0[(d1)(q1)]ad bp_c=p_0[(d-1)(q-1)]^{-a}d^{\ b}, where dd is the space dimension and qq the coordination number. All thresholds up to dd\rightarrow \infty are found to belong to only three universality classes. For first two classes b=0b=0 for site dilution while b=ab=a for bond dilution. The last one associated to high dimensions is characterized by b=2a1b=2a-1 for both sites and bonds. Classes are defined by a set of value for {p0; a}\{p_0; \ a\}. Deviations from available numerical estimates at d7d \leq 7 are within ±0.008\pm 0.008 and ±0.0004\pm 0.0004 for high dimensional hypercubic expansions at d8d \geq 8. The formula is found to be also valid for Ising critical temperatures.Comment: 11 pages, latex, 3 figures not include

    Similar works

    Full text

    thumbnail-image

    Available Versions