114 research outputs found
The Application of the Haddon Matrix to Public Health Readiness and Response Planning
State and local health departments continue to face unprecedented challenges in preparing for, recognizing, and responding to threats to the publicâs health. The attacks of 11 September 2001 and the ensuing anthrax mailings of 2001 highlighted the public health readiness and response hurdles posed by intentionally caused injury and illness. At the same time, recent natural disasters have highlighted the need for comparable public health readiness and response capabilities. Public health readiness and response activities can be conceptualized similarly for intentional attacks, natural disasters, and human-caused accidents. Consistent with this view, the federal government has adopted the all-hazards response model as its fundamental paradigm. Adoption of this paradigm provides powerful improvements in efficiency and efficacy, because it reduces the need to create a complex family of situation-specific preparedness and response activities. However, in practice, public health preparedness requires additional models and tools to provide a framework to better understand and prioritize emergency readiness and response needs, as well as to facilitate solutions; this is particularly true at the local health department level. Here, we propose to extend the use of the Haddon matrixâa conceptual model used for more than two decades in injury prevention and response strategiesâfor this purpose
Measuring the Absolute Height and Profile of the Mesospheric Sodium Layer using a Continuous Wave Laser
We have developed and tested a novel method, based on LIDAR, of measuring the
height and profile of the mesospheric sodium layer using a continuous wave
laser. It is more efficient than classical LIDAR as the laser is on for 50% of
the time, and so can in principle be used during laser guide star adaptive
optics observations. It also has significant advantages over direct imaging
techniques because it does not require a second telescope, is almost
independent of the atmospheric conditions, and avoids triangulation problems in
determining the height. In the long term, regular monitoring using this method
would allow a valuable database of sodium layer profiles, heights, and return
flux measurements to be built up which would enable observatory staff
astronomers to schedule observations optimally. In this paper we describe the
original experiment carried out using the ALFA laser guide star system at Calar
Alto Observatory in Spain. We validate the method by comparing the LIDAR
results with those obtained from simultaneous imaging from an auxiliary
telescope. Models are presented of a similar system to be implemented in the
Very Large Telescope Laser Guide Star Facility, which will enable the initial
focus setting for the adaptive optics systems to be determined with an accuracy
of less than 200 m on a timescale of 1 minute.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 14
figure
Polychromatic guide star: feasibility study
International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS
Polychromatic guide star: feasibility study
International audienceAdaptive optics at astronomical telescopes aims at correcting in real time the phase corrugations of incoming wavefronts caused by the turbulent atmosphere, as early proposed by Babcock. Measuring the phase errors requires a bright source located within the isoplanatic patch of the program source. The probability that such a reference source exists is a function of the wavelength, of the required image quality (Strehl ratio), of the turbulence optical properties, and of the direction of the observation. It turns out that the sky coverage is disastrously low in particular in the visible wavelength range where, unfortunately, the gain in spatial resolution brought by adaptive optics is the largest. Foy and Labeyrie have proposed to overcome this difficulty by creating an artificial point source in the sky in the direction of the observation relying on the backscattered light due to a laser beam. This laser guide star (hereinafter referred to as LGS) can be bright enough to allow us to accurately measure the wavefront phase errors, except for two modes which are the piston (not relevant in this case) and the tilt. Pilkington has emphasized that the round trip time of the laser beam to the mesosphere, where the LGS is most often formed, is significantly shorter than the typical tilt coherence time; then the inverse-return-of-light principle causes deflections of the outgoing and the ingoing beams to cancel. The apparent direction of the LGS is independent of the tilt. Therefore the tilt cannot be measured only from the LGS. Until now, the way to overcome this difficulty has been to use a natural guide star to sense the tilt. Although the tilt is sensed through the entire telescope pupil, one cannot use a faint source because $APEX 90% of the variance of the phase error is in the tilt. Therefore, correcting the tilt requires a higher accuracy of the measurements than for higher orders of the wavefront. Hence current adaptive optics devices coupled with a LGS face low sky coverage. Several methods have been proposed to get a partial sky coverage for the tilt. The only one providing us with a full sky coverage is the polychromatic LGS (hereafter referred to as PLGS). We present here a progress report of the R&D; program Etoile Laser Polychromatique et Optique Adaptative (ELP-OA) carried out in France to develop the PLGS concept. After a short recall of the principles of the PLGS, we will review the goal of ELP-OA and the steps to get over to bring it into play. We finally shortly described the effort in Europe to develop the LGS
Observation of the plasma channel dynamics and Coulomb explosion in the interaction of a high-intensity laser pulse with a He gas jet
We report the first interferometric observations of the dynamics of electron-ion cavitation of relativistically self-focused intense 4 TW, 400 fs laser pulse in a He gas jet. The electron density in a channel 1 mm long and 30 ÎŒm in diameter drops by a factor of approximately 10 from the maximum value of âŒ8Ă10 19 cm â3 . A high radial velocity of the plasma expansion, âŒ3.8Ă10 8 cm/s, corresponding to an ion energy of about 300 keV, is observed. The total energy of fast ions is estimated to be 6% of the laser pulse energy. The high-velocity radial plasma expulsion is explained by a charge separation due to the strong ponderomotive force. This experiment demonstrates a new possibility for direct transmission of a significant portion of the energy of a laser pulse to ions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45800/1/11448_2006_Article_813.pd
A precautionary public health protection strategy for the possible risk of childhood leukaemia from exposure to power frequency magnetic fields
<p>Abstract</p> <p>Background</p> <p>Epidemiological evidence showing a consistent association between the risk of childhood leukaemia and exposure to power frequency magnetic fields has been accumulating. This debate considers the additional precautionary intervention needed to manage this risk, when it exceeds the protection afforded by the exposure guidelines as recommended by the International Commission on Non-Ionizing Radiation Protection.</p> <p>Methods</p> <p>The Bradford-Hill Criteria are guidelines for evaluating the scientific evidence that low frequency magnetic fields cause childhood leukaemia. The criteria are used for assessing the strength of scientific evidence and here have been applied to considering the strength of evidence that exposures to extremely low frequency magnetic fields may increase the risk of childhood leukaemia. The applicability of precaution is considered using the risk management framework outlined in a European Commission (EC) communication on the Precautionary Principle. That communication advises that measures should be proportionate, non-discriminatory, consistent with similar measures already taken, based on an examination of the benefits and costs of action and inaction, and subject to review in the light of new scientific findings.</p> <p>Results</p> <p>The main evidence for a risk is an epidemiological association observed in several studies and meta-analyses; however, the number of highly exposed children is small and the association could be due to a combination of selection bias, confounding and chance. Corroborating experimental evidence is limited insofar as there is no clear indication of harm at the field levels implicated; however, the aetiology of childhood leukaemia is poorly understood. Taking a precautionary approach suggests that low-cost intervention to reduce exposure is appropriate. This assumes that if the risk is real, its impact is likely to be small. It also recognises the consequential cost of any major intervention. The recommendation is controversial in that other interpretations of the data are possible, and low-cost intervention may not fully alleviate the risk.</p> <p>Conclusions</p> <p>The debate shows how the EC risk management framework can be used to apply the Precautionary Principle to small and uncertain public health risks. However, despite the need for evidence-based policy making, many of the decisions remain value driven and therefore subjective.</p
- âŠ