82 research outputs found

    Orthogonal Cauchy-like matrices

    Get PDF
    Cauchy-like matrices arise often as building blocks in decomposition formulas and fast algorithms for various displacement-structured matrices. A complete characterization for orthogonal Cauchy-like matrices is given here. In particular, we show that orthogonal Cauchy-like matrices correspond to eigenvector matrices of certain symmetric matrices related to the solution of secular equations. Moreover, the construction of orthogonal Cauchy-like matrices is related to that of orthogonal rational functions with variable poles

    Generalized modularity matrices

    Get PDF
    Various modularity matrices appeared in the recent literature on network analysis and algebraic graph theory. Their purpose is to allow writing as quadratic forms certain combinatorial functions appearing in the framework of graph clustering problems. In this paper we put in evidence certain common traits of various modularity matrices and shed light on their spectral properties that are at the basis of various theoretical results and practical spectral-type algorithms for community detection

    1-hypergroups of small sizes

    Get PDF
    In this paper, we show a new construction of hypergroups that, under appropriate conditions, are complete hypergroups or non-complete 1-hypergroups. Furthermore, we classify the 1-hypergroups of size 5 and 6 based on the partition induced by the fundamental relation \u3b2. Many of these hypergroups can be obtained using the aforesaid hypergroup construction

    Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates

    Full text link
    In this paper we will review the main results concerning the issue of stability for the determination unknown boundary portion of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and selfcontained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order of differentiability, the continuous dependence of unknown boundary from the measured data is, at best, of logarithmic type

    ITERATED QUASI-REVERSIBILITY METHOD APPLIED TO ELLIPTIC AND PARABOLIC DATA COMPLETION PROBLEMS

    Get PDF
    International audienceWe study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method prove to be efficient even with highly corrupted data

    Spectral properties of Hankel matrices and numerical solutions of finite moment problems

    Get PDF
    AbstractAfter proving that any Hankel matrix generated by moments of positive functions is conditioned essentially the same as the Hilbert matrix of the same size, we show a preconditioning technique, i.e., a congruence transform of the original Hankel matrix that drastically reduces its ill-conditioning. Applications of this result to classical orthogonal polynomial sequences and to modified moment problems are given. Also, we outline an efficient algorithm for the computation of the function f(x) = w(x) exp (p(x)), where w(x) is positive and p(x) is a polynomial of degree n−1, from the knowledge of its first n moments
    • …
    corecore