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Abstract We consider the fundamental relations β and γ in simple and 0-simple semihypergroups, especially
in connection with certain minimal cardinality questions. In particular, we enumerate and exhibit all simple
and 0-simple semihypergroups having order 3 where β is not transitive, apart of isomorphisms. Moreover, we
show that the least order for which there exists a strongly simple semihypergroup where β is not transitive is
4. Finally, we prove that γ is transitive in all simple semihypergroups, and determine necessary and sufficient
conditions for a 0-simple semihypergroup to have γ transitive. The latter results obviously hold also for simple
and 0-simple semigroups.
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1 Introduction and preliminaries

Among algebraic hyperstructures, semihypergroups are currently attracting a growing interest being subject
of study by various authors, and under different perspectives [2,3,8,9,13–15,18]. For example, interesting
problems arise in the study of their so-called fundamental relations, which lead to analyse conditions for their
transitivity [11,12,16], algebraic properties of the associated quotient structures [3,4,18,21], and minimal
cardinality problems [8,9,13]. In particular, in the paper [13] it is shown that in all semihypergroups H of type
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U on the right the fundamental relation β is transitive if |H | ≤ 8, and exhibits a counterexample having order
9; furthermore, in all semihypergroups of type U on the right the fundamental relation γ is always transitive.
The above mentioned results allowed to solve various minimal cardinality problems on finite semihypergroups
of type U on the right.

The present paper deepens the knowledge of the fundamental relations β and γ in the classes of simple
and 0-simple semihypergroups, and addresses certain minimal cardinality problems in connection with them.
Simple and 0-simple semihypergroups have been recently introduced in [18] as a generalization of analo-
gous well known and widely studied structures in semigroup theory [17]. We remark that the class of simple
semihypergroups extends that of finite semihypergroups of type U on the right. Motivated by the results in
[13], it is natural to consider whether or not the relations β and γ are transitive in the wider class of simple
semihypergroups. Actually, we prove hereafter that γ is transitive in all simple semihypergroups, while the
least order of a simple semihypergroup having β non transitive is 3. Analogous properties are also found in
the class of 0-simple semihypergroups.

The outline of this paper is as follows: After introducing some fundamental definitions and results, in
Sect. 2 we recall definitions and elementary properties of simple and 0-simple semihypergroups, and we
define strongly simple semihypergroups, a subclass of simple semihypergroups which plays an important
role in what follows. Furthermore, we give a list of examples and some special constructions of simple and
strongly simple semihypergroups. Some of these examples will be exploited in successive sections. In Sect. 3
we determine all simple semihypergroups having order 3, apart of isomorphisms, where β is not transitive.
Remarkably, all these semihypergroups are not strongly simple, since they are either left- or right-reproducible.

This fact motivates the study carried out in Sect. 4 where we prove the existence of strongly simple
semihypergroups having order 4 where β is not transitive. The proof is constructive and exploits a special
one-element extension of the semihypergroups found in the preceding section. In Sect. 5 we consider 0-simple
semihypergroups, as their analysis cannot be carried out as in the simple case, and we determine all 0-simple
semihypergroups having order 3 where β is not transitive. In Sect. 6 we consider the relation γ in both simple
and 0-simple semihypergroups. In particular we prove that γ is transitive in all simple semihypergroups, thus
extending the analogous result concerning semihypergroups of type U on the right [13]. Moreover, we show
a necessary and sufficient condition for a 0-simple semihypergroup to have γ transitive. In the last section we
draw some conclusions and state an open problem.

Remark 1.1 Throughout the paper, we will often show hyperproduct tables of semihypergroups. These tables
are usually obtained after long arguments that are aimed at proving the existence of semihypergroups having
certain properties. We inform the reader that, after these tables are obtained, we always check their associa-
tivity either by hand or by means of computer routines, as those described in [7]. Hence, the corresponding
semihypergroups are correctly defined, even if this is not always explicitly stated in what follows.

Basic definitions and results

Throughout this paper we use just a few basic concepts and definitions that belongs to common terminology
in hyperstructure theory. A semihypergroup is a set endowed with an associative hyperproduct. A semihyper-
group H is left-reproducible (respectively, right-reproducible) if H x = H (respectively, x H = H ) for all
x ∈ H . A hypergroup is a semihypergroup that is both left- and right-reproducible, hence x H = H x = H,
for all x ∈ H .

A non-empty subset S of a semihypergroup H is called a subsemihypergroup of H if it is closed with
respect to multiplication, that is, if xy ⊂ S for all x, y ∈ S. If the subsemihypergroup S is a semigroup, we
say that S is a subsemigroup of H .

Given a semihypergroup H, the relation β∗ of H is the transitive closure of the relation β = ∪n≥1βn,
where β1 is the diagonal relation in H and, for every integer n > 1, βn is defined as follows:

xβn y ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊂ z1 · · · zn.

Moreover, if Sn denotes the symmetric group on {1, 2, . . . , n}, the relation γ ∗ is the transitive closure of the
relation γ = ∪n≥1γn, where γ1 = β1 is the diagonal relation and, for every integer n > 1, γn is defined as
follows:

xγn y ⇐⇒ ∃(z1, . . . , zn) ∈ Hn, ∃σ ∈ Sn : x ∈ z1 · · · zn, y ∈ zσ(1) · · · zσ(n).
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The relations β, β∗, γ and γ ∗ are called fundamental relations on H [21]. Their relevance in semihypergroup
theory stems from the following facts [11,19]: If H is a semihypergroup (resp., a hypergroup), then the relation
β∗ is the smallest strongly regular equivalence on H and the quotient H/β∗ is a semigroup (resp., a group).
Moreover, the relation γ ∗ is the smallest strongly regular equivalence such that the quotient H/γ ∗ is a com-
mutative semigroup (resp., a commutative group). The interested reader can find all relevant definitions, many
properties and applications of fundamental relations, even in more abstract contexts, also in [1,4,9,12,16,21].

2 Simple and 0-simple semihypergroups

In this section we recall the definition of simple and 0-simple semihypergroups; furthermore, we show some
examples of such structures that we shall use in the subsequent section. The concept of simple semigroup is
well known and widely studied in the framework of semigroup theory [17]. Recently, this concept has been
extended to semihypergroup theory [18].

Definition 2.1 A semihypergroup H is simple if H x H = H for all x ∈ H .

If H is a semihypergroup, an element 0 ∈ H such that 0x = 0 (resp., x0 = 0) for all x ∈ H is called left
zero scalar element (resp., right zero scalar element) of H . If 0 is both left and right zero scalar element, then
0 is called zero scalar.

Definition 2.2 A semihypergroup H with a zero scalar element is called 0-simple if H x H = H for all
x ∈ H − {0}.

We remark that the definitions of simple and 0-simple semihypergroup as given by Definition 2.1 and
Definition 2.2 are equivalent to the ones usually introduced by means of the ideals of the semihypergroup, see
e.g., [17,18].

Our first examples are immediate:

1. All left- or right-reproducible semihypergroups are simple. Indeed, we have

H x H = H H = ∪a∈H Ha = H.

As a consequence, not only all hypergroups are simple semihypergroups, but also all finite semihypergroups
of type U on the right are simple, because they are left-reproducible [8,9,13].

2. The following example mirrors a construction of the so-called K H -semihypergroups given in [5]: If H is a
simple semihypergroup and A = {Ax }x∈H is a family of nonempty and pairwise disjoint sets, then the set
K = ∪x∈H Ax is a simple semihypergroup with respect to the hyperproduct a ◦ b = ∪z∈xy Az, for a ∈ Ax
and b ∈ Ay .

3. If (H, ◦) and (K , •) are two simple semihypergroups, then the cartesian product H × K is a simple
semihypergroup with respect to the hyperoperation ⊗ naturally defined as

(x, y) ⊗ (z, w) = (x ◦ z) × (y • w).

We remark that, in this case, if H is only left-reproducible (but not right-reproducible) and K is only right-
reproducible (but not left-reproducible), then H × K is a simple semihypergroup which is neither left- nor
right-reproducible.

4. A more significant example of simple semihypergroup which is neither left- nor right-reproducible is
described by the following hyperproduct table:

a b c d e
a a b a b b
b a b a b b
c c d, e c d, e d, e
d c d, e c d, e d, e
e c d, e c d, e d, e

(1)

In fact, it is apparent that this semihypergroup cannot be obtained as a direct product of smaller semihy-
pergroups.

123



178 Arab J Math (2012) 1:175–190

The semihypergroup (1) has a remarkable property: All its subsemihypergroups are simple. This fact
suggests the following definition, which will be developed in subsequent sections:

Definition 2.3 A semihypergroup H is said strongly simple if it fulfills the following conditions:

1. H and all subsemihypergroups of H are simple;
2. there exist x, y ∈ H such that H x 
= H and y H 
= H .

We remark that strongly simple semihypergroups cannot have left or right zero scalar elements. Indeed,
we have the following result:

Proposition 2.4 If H is a simple semihypergroup and 0 ∈ H is a right zero scalar element (resp., left zero
scalar element), then H is right-reproducible (resp., left-reproducible).

Proof Since H is simple we have H = (H0)H = 0H . Moreover, for all a ∈ H, we have aH = a(0H) =
(a0)H = 0H = H, hence H is right-reproducible. The case when 0 is a left zero scalar is treated analogously.

��
As an immediate consequence, we obtain the following claim, which will be useful in subsequent argu-

ments:

Corollary 2.5 Let H be a simple semihypergroup that is not right-reproducible (resp., left-reproducible), and
let K ⊂ H be a proper subsemihypergroup. If a ∈ K is a right (resp., left) zero scalar element of K , then
(H − K )a 
⊂ K (resp., a(H − K ) 
⊂ K ).

Proof If (H − K )a ⊂ K then, using the identity a2 = {a} we obtain

Ha = ((H − K ) ∪ K )a = (H − K )a ∪ K a = (H − K )a2 ∪ K a ⊂ K a ∪ K a = {a}.
As a consequence, Ha = {a} and a is a right zero scalar element of H . Hence, by Proposition 2.4, H is
right-reproducible, which is a contradiction. ��

In what follows, we consider two more examples of simple semihypergroups, which deserve some atten-
tion. The first example is an extreme generalization of Rees construction [17]. In the second example we
provide a list of all simple semihypergroups having order 2, apart of isomorphisms. Some of these semihy-
pergroups will be exploited in the forthcoming section to construct simple semihypergroups having order 3,
whose fundamental relation β is not transitive.

Example 2.6 Let H be a hypergroup, let A = {Ai }i∈I and B = {B j } j∈J be two families of nonempty and
pairwise disjoint sets, and let ϕ : J × I �→ P∗(H). Introduce the notations A = ∪i∈I Ai , B = ∪ j∈J B j ,
E = A × H × B and ϕ(h, k) = Phk for all (h, k) ∈ J × I . On the set E we can define the following
hyperproduct:

(a, x, b) ∈ Ai × H × B j
(a′, y, b′) ∈ Ak × H × Bh

}
�⇒ (a, x, b) ◦ (a′, y, b′) = Ai × (x Pjk y) × Bh . (2)

This hyperproduct is associative. Indeed, for any triple (a′′, z, b′′) ∈ Ar × H × Bs, in the hypergroup H we
have (x Pjk y)Phr z = x Pjk(y Phr z) and for the hyperproduct in E it holds

[(a, x, b) ◦ (a′, y, b′)] ◦ (a′′, z, b′′) = [Ai × (x Pjk y) × Bh] ◦ (a′′, z, b′′)
= Ai × (x Pjk y)Phr z × Bs

and moreover

(a, x, b) ◦ [(a′, y, b′) ◦ (a′′, z, b′′)] = (a, x, b) ◦ [Ak × (y Phr z) × Bs]
= Ai × x Pjk(y Phr z) × Bs .

Hence [(a, x, b) ◦ (a′, y, b′)] ◦ (a′′, z, b′′) = (a, x, b) ◦ [(a′, y, b′) ◦ (a′′, z, b′′)] and the hyperproduct is asso-
ciative. Furthermore, for any fixed pair (s, r) ∈ J × I and for any elements b ∈ Bs and a ∈ Ar , from equation
H Psi x Pjr H = H we obtain that there exists a pair (w,w) ∈ H × H such that y ∈ wPsi x Pjrw. As a conse-
quence, (a′, y, b′) ∈ (a′, w, b)◦(a, x, b)◦(a, w, b′). In conclusion, we have proven that E ◦(a, x, b)◦ E = E
for all (a, x, b) ∈ E, that is, E is a simple semihypergroup. ��
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The preceding example gives us a very general technique to construct simple semihypergroups; various
known constructions can be considered as particular cases, where all the sets in the families A and B are
singletons, so that we can identify A and B with the index sets I and J, respectively. In that case, we shall say
that E is a (H, I, J, ϕ)-semihypergroup.

1. If H is a group and the map ϕ is single-valued, then the (H, I, J, ϕ)-semihypergroup is a semigroup known
as Rees matrix semigroup, see [17, §3.3].

2. If H is a regular hypergroup (see e.g., [18] for the definition of regular hypergroup) and the map ϕ is
single-valued, then the (H, I, J, ϕ)-semihypergroup is the Rees matrix semihypergroup introduced in
[18].

3. If |I | = |J | = 1, then the (H, I, J, ϕ)-semihypergroup E = I × H × J is a hypergroup, whatever is ϕ.
Indeed, in the paper [10] it is shown that for any nonempty subset A of a hypergroup H, the hyperproduct
◦A defined as

∀(x, y) ∈ H2, x ◦A y = x Ay

is associative and (H, ◦A) is a hypergroup. Now, if I = {i}, J = { j}, and A = ϕ( j, i), then Equation (2)
becomes (i, x, j) ◦ (i, y, j)) = {i} × x Ay × { j}, whence the map f : E �→ H such that f (i, x, j) = x is
an isomorphism between (E, ◦) and (H, ◦A).

Example 2.7 It is not difficult to prove (by an exhaustive procedure) that, apart of isomorphisms, all simple
semihypergroups of order 2 are the following:

1. The eight hypergroups of order 2, see [6,20];
2. The two semigroups

x y
x x y
y x y

x y
x x x
y y y

(3)

3. The following semihypergroups:

x y
x x x, y
y x y

x y
x x x, y
y x x, y

x y
x x x
y x, y y

x y
x x x
y x, y x, y

(4)

Observe that the four semihypergroups (4) are not (H, I, J, ϕ)-semihypergroups. Indeed, all (H, I, J, ϕ)-
semihypergroups of order 2 fall into the following cases:

1. |H | = |J | = 1 and |I | = 2;
2. |H | = |I | = 1 and |J | = 2;
3. |H | = 2 and |I | = |J | = 1.

In the first two cases the resulting (H, I, J, ϕ)-semihypergroup is isomorphic to one of the two semigroups in
(3), while in the last case it is a hypergroup. ��

3 The relation β in simple semihypergroups

The recent paper [13] has solved the problem of the existence of semihypergroups of type U on the right where
the fundamental relation β is not transitive. Indeed, in that paper the author exhibits a semihypergroup of type
U on the right having cardinality 9 where β is not transitive, and moreover, proves that in all semihypergroups
of type U on the right having cardinality less than 9 β is always transitive. Analogous problems arise for the
class of strongly simple semihypergroups. In fact, in this section we will prove that there exist exactly 10
simple semihypergroups having order 3, apart of isomorphisms, where the relation β is not transitive. Their
subsemihypergroups are simple, hence they fulfil the first condition of Definition 2.3; by the way, they are not
strongly simple because they are either left- or right-reproducible.

Now, since in all semihypergroups having order 2 the relation β is transitive, it is interesting to determine
the minimal cardinality for which there exist a strongly simple semihypergroup where the relation β is not
transitive. This problem will be solved by the forthcoming Theorem 4.4.
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Remark 3.1 If H is a semihypergroup such that β is not transitive, then there exists a triple (a, b, c) of distinct
elements of H such that aβb, aβc but (b, c) /∈ β. Obviously, in this case, for any integer k ≥ 1 and for any
k-uple (z1, z2, . . . , zk) of elements in H we have

∏k
i=1 zi 
= H . Moreover, there exist two hyperproducts

P = ∏n
i=1 xi and Q = ∏m

i=1 yi such that {a, b} ⊂ P and {a, c} ⊂ Q. Now, if we suppose that H = {a, b, c}
then we have P = {a, b}, Q = {a, c} and moreover

π1) P P = aa ∪ ab ∪ ba ∪ bb;
π2) P Q = aa ∪ ac ∪ ba ∪ bc;
π3) Q P = aa ∪ ab ∪ ca ∪ cb;
π4) Q Q = aa ∪ ac ∪ ca ∪ cc.

Furthermore, it holds H H = H . Indeed, if this is not the case, the set H H is contained into one of the sets
{a, b}, {a, c} or {b, c}; as a consequence, we would obtain the contradiction (a, b) /∈ β or (a, c) /∈ β. Finally,
we observe that aa = {a}. Indeed, if we suppose that b ∈ aa, since c ∈ H = H H = P P ∪ P Q ∪ Q P ∪ Q Q,
by way of π1), π2), π3) and π4) we obtain the contradiction bβc. Analogously, we prove that c /∈ aa.

The forthcoming results are preliminary to the construction of simple semihypergroups having order 3 and
β not transitive.

Lemma 3.2 Let H = {a, b, c} be a simple semihypergroup such that aβb, aβc and (b, c) /∈ β. In the notations
of Remark 3.1, we have:

1. aa = {a};
2. ab 
= {b} and ac 
= {c};
3. c 
∈ P P;
4. b 
∈ Q Q;
5. ab = {a} ⇐⇒ ac = {a};
Proof

1. This fact has been shown in Remark 3.1.
2. Let us suppose by absurd that ab = {b}. Hence, by the preceding point together with π1) and π3), we

have ba ∪ bb ∪ ca ∪ cb ⊂ {a, b}. Hence Ha ∪ Hb ⊂ {a, b}. Moreover, for any x ∈ H we obtain c ∈ xc,
otherwise for some x ∈ H we have xc ⊂ {a, b} and we arrive at the contradiction H = H x H ⊂ H{a, b} =
Ha ∪ Hb ⊂ {a, b}. Hence xc ∈ {{c}, {a, c}} for all x ∈ H and, in particular, Hc ⊂ {a, c}.
From c ∈ bc, ba ⊂ {a, b} and π2), we derive ba = {a}. Analogously, from c ∈ ac, ca ⊂ {a, b} and π4),
we derive ca = {a}. Furthermore, we have cb = c(ab) = (ca)b = ab = {b} and bb = b(ab) = (ba)b =
ab = {b}. Hence Ha = {a}, Hb = {b} and Hc ⊂ {a, c}. This implies that no hyperproduct contains
{a, b}, thus contradicting the hypothesis aβb. By reversing the role of b and c, we prove that ac 
= {c}.

3. We prove the claim by showing that c /∈ ab ∪ ba ∪ bb.
Let us suppose by absurd that c ∈ ab. Firstly, we prove that ba = ca = {a}. Indeed, by π1) and π3), one
has ba ∪ bb ∪ ca ∪ cb ⊂ {a, c}. Moreover, c 
∈ ba. Actually, if c ∈ ba then by π2) we obtain the inclusion
ac ∪ bc ⊂ {a, c}. As a consequence b ∈ cc since H = H H = {a, c} ∪ cc. This fact implies

b ∈ cc ⊂ c(ab) = (ca)b ⊂ {a, c}b = ab ∪ cb ⊂ {a, c},
which is impossible. Hence ba = {a}.
Analogously we have c 
∈ ca. Indeed, if c ∈ ca then by π4) we obtain the inclusion ac ∪ cc ⊂ {a, c}. As
a consequence b ∈ bc since H = H H = {a, c} ∪ bc. This fact implies b ∈ bc ⊂ b(ab) = (ba)b = ab ⊂
{a, c}, which is impossible. Hence ca = {a}.
From c ∈ ab = (ba)b = b(ab) ⊂ b{a, c} = ba ∪ bc = {a} ∪ bc we obtain c ∈ bc. Hence, by π2) it
follows that ac ⊂ {a, c} and moreover H = (Ha)H = aH ⊂ {a, c}, which is absurd. Hence we conclude
that c 
∈ ab.
By reversing the roles of a and b we obtain c 
∈ ba.
Finally we prove that c 
∈ bb. Indeed, if c ∈ bb, by 1) and π1) we have aa = ab = ba = {a} and moreover

ac ⊂ a(bb) = (ab)b = ab = {a},
whence ac = {a}. By exploiting the hyperproduct bba we also get ca = {a}. This fact would imply that a
is a zero element in H but this is impossible since H is simple. Hence c 
∈ P P .
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4. The proof goes analogously as in the preceding point by interchanging the role of b and c and by exploiting
appropriately the conditions πi ) for i = 1, 2, 3, 4.

5. Let ab = {a}. From the preceding point we obtain ac ∪ ca ∪ cc ⊂ {a, c}. Now if we suppose c ∈ ac, by
π2) and 3., we obtain ba = {a} and bc ⊂ {a, c}. Hence H = H(aH) = H{a, c} = Ha ∪ Hc ⊂ {a, c}
which is absurd. So c 
∈ ac and we conclude ac = {a}.
The reverse implication ac = {a} ⇒ ab = {a} can be shown analogously by reversing the role of b and c
and by applying π3) and the preceding point. ��

Lemma 3.3 Let H = {a, b, c} be a simple semihypergroup such that aβb, aβc and (b, c) /∈ β. If ab = {a}
then b ∈ ba ∩ bb and c ∈ ca ∩ cc.

Proof By hypothesis and parts 3 and 5 of Lemma 3.2, we have ab = ac = {a} and ba ⊂ {a, b}. If we suppose
that ba = {a} then we obtain H = H(aH) = Ha = {a} ∪ ca. As a consequence, {b, c} ⊂ ca whence bβc, a
contradiction.

Hence b ∈ ba. Furthermore, if bb = {a} then we obtain {a} = ab = (bb)b = b(bb) = ba which is
impossible. Hence b ∈ ba ∩ bb.

The second part of the claim is shown analogously by interchanging the role of b and c. ��
Proposition 3.4 Let H = {a, b, c} be a simple semihypergroup such that aβb, aβc and (b, c) /∈ β. Then, the
two sets P = {a, b} and Q = {a, c} are simple subsemihypergroups of H.

Proof Hereafter we prove the claim for P . The proof for Q is completely analogous.
By point 3 of Lemma 3.2 we have P P ⊂ P . If |P P| = 1, by part 1 of Lemma 3.2 we have aa = ab =

ba = {a} and this fact is in contradiction with Lemma 3.3. Hence P P = P = {a, b}. Now, for part 2 of
Lemma 3.2 we have ab ∈ {{a}, {a, b}}. If ab = {a, b} then it follows immediately that Pa P = PbP = P .
On the other hand, if ab = {a} then by Lemma 3.2 and Lemma 3.3 we obtain aa = ab = {a} and b ∈ ba ∩bb.
Thus a ∈ (ab)a and b ∈ (bb)a. As a consequence, we get Pa P = P(a P) = Pa = aa ∪ ba = P and
P ⊂ (ab)a ∪ (bb)a ⊂ PbP ⊂ P . Hence, also in this case we obtain Pa P = PbP = P . ��

In what follows, we will describe the isomorphism classes of the simple semihypergroups having order 3
where the relation β is not transitive. By Remark 3.1, we can limit ourselves to the case where H = {a, b, c}
is a simple semihypergroup such that aβb, aβc and (b, c) /∈ β Moreover, by Lemma 3.2 and Proposition 3.4,
we can restrict our analysis to the cases ab = {a, b} and ab = {a}.

3.1 First step: ab = {a, b}
If we assume that ab = {a, b} then we can deduce that

aa = ba = {a}, ab = {a, b} and aa = ca = {a}, ac = {a, c}. (5)

Indeed, by π3), one has c 
∈ ca otherwise Q P = H and bβc. Moreover, since b 
∈ Q Q, we have b 
∈ ca and
thus ca = {a}. Furthermore, ac 
= {a}, otherwise a is a zero element in Q and Q is not simple. Hence, by
point 2 of Lemma 3.2, we obtain ac = {a, c}. Finally, by π2), we get ba = {a}.

Now, from Example 2.7 we know that, apart of isomorphisms, there exist only two simple semihyper-
groups Si = {x, y}, for i = 1, 2, such that xx = yx = {x} and xy = {x, y}. Their multiplicative tables are
the following:

S1 :
x y

x x x, y
y x y

S2 :
x y

x x x, y
y x x, y

(6)

Consequently, from conditions (5) we obtain that the two simple subsemihypergroups P = {a, b} and Q =
{a, c} must be isomorphic to S1 or S2. Hence, the only possible cases in the present step are contained in the
following partial tables:

T1 :
a b c

a a a, b a, c
b a b
c a c

T2 :
a b c

a a a, b a, c
b a b
c a a, c

(7)
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T3 :
a b c

a a a, b a, c
b a a, b
c a c

T4 :
a b c

a a a, b a, c
b a a, b
c a a, c

(8)

Now, we observe that the hyperproducts π2) and π3) in Remark 3.1 imply respectively bc ⊂ {a, c} and
cb ⊂ {a, b}. Moreover, bc 
= {a} otherwise one has c ∈ ac ⊂ (ab)c = a(bc) = aa = {a}. Analogously
cb 
= {a} otherwise b ∈ ab ⊂ (ac)b = a(cb) = aa = {a}. Hence

bc ∈ {{c}, {a, c}} and cb ∈ {{b}, {a, b}}. (9)

Finally, from (9) we get the following implications:

1. bb = {a, b} ⇒ bc = {a, c}. Otherwise bc = {c} and the product bbc leads to the contradiction
{c} = {a, c}.

2. cb = {b} ⇒ cc = {c}. Indeed, if cc = {a, c} the product ccb leads to the contradiction {b} = {a, b}.
3. As a consequence, the partial table T4 is completed by the simple semihypergroup

H1 :
a b c

a a a, b a, c
b a a, b a, c
c a a, b a, c

(10)

The partial table T3 leads to the two simple semihypergroups

H2 :
a b c

a a a, b a, c
b a a, b a, c
c a b c

H3 :
a b c

a a a, b a, c
b a a, b a, c
c a a, b c

(11)

Furthermore, the partial table T2 can be completed as

H ′
2 :

a b c
a a a, b a, c
b a b c
c a a, b a, c

H ′
3 :

a b c
a a a, b a, c
b a b a, c
c a a, b a, c

(12)

that are two simple semihypergroups isomorphic to H2 and H3 respectively.
4. bb = cb = {b} ⇒ bc = {c}. Otherwise bc = {a, c} and the product bcb leads to the contradiction

{b} = {a, b}.
5. If bb = {b} and cb = {a, b} then bc = {c} ⇒ cc = {a, c}. Otherwise cc = {c} and the product cbc leads

to {c} = {a, c}.
6. As a consequence, the partial table T1 can be completed only by the following simple semihypergroups:

H4 :
a b c

a a a, b a, c
b a b c
c a b c

H5 :
a b c

a a a, b a, c
b a b a, c
c a a, b c

(13)

So far, we have obtained five simple semihypergroups having order 3 where the relation β is not transitive.
These semihypergroups are pairwise non isomorphic. Furthermore, they are not strongly simple, because they
are right-reproducible.
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3.2 Second step: ab = {a}
We begin with the following remark: If (H, ◦) is a semihypergroup then H is also a semihypergroup with
respect to the hyperproduct • defined as x • y = y ◦ x for all x, y ∈ H . In what follows, the semihypergroup
(H, •) will be called the transposed of (H, ◦) and will be denoted simply by H T . Clearly, the use of that
term is motivated by the fact that, in the finite case, the multiplicative table of H T is obtained by transposing
the multiplicative table of H . Obviously, if H and K are two isomorphic semihypergroups then also H T and
K T are isomorphic. Furthermore, we note that in general H is not isomorphic to H T . For example, it is easy
to check that for i = 1, . . . , 5 the transposed semihypergroups H T

i are not isomorphic respectively to the
semihypergroups Hi obtained in Eqs. (10), (11) and (13). Finally, we observe that the relation β is transitive
in H if and only if it is transitive in H T . Moreover, H is simple (resp., left-reproducible) if and only if H T is
simple (resp., right-reproducible).

In the following we will show that, apart of isomorphisms, the semihypergroups H T
i for i = 1, . . . , 5 are

the only simple semihypergroups having order 3 where the relation β is not transitive and aa = ab = {a}.
Indeed, if K is a semihypergroup verifying these conditions, then the simple subsemihypergroup P = {a, b}
is isomorphic to one of the two semihypergrups

S3 = ST
1 :

x y
x x x
y x, y y

S4 = ST
2 :

x x
x x x
y x, y x, y

(14)

In particular, in K one has ba = {a, b}. This fact implies that in K T one has ab = {a, b}. As a consequence,
there exists i ∈ {1, . . . , 5} such that K T ∼= Hi . Hence K ∼= (K T )T ∼= H T

i . In conclusion, we can state the
following result:

Theorem 3.5 Apart of isomorphisms, there exist 10 simple semihypergroups having order 3 where the rela-
tion β is not transitive. These semihypergroups are H1, H2, H3, H4, H5 and their respective transposed
semihypergroups.

4 Strongly simple extensions

The ten semihypergroups in Theorem 3.5 fulfil the first condition in Definition 2.3 but not the second one. In
fact, for i = 1, . . . , 5 the semihypergroup Hi is right-reproducible, while H T

i is left-reproducible. This fact
lead us to the problem of determining the least order for a strongly simple semihypergroup whose relation β
is not transitive. In this section we will prove that this number is 4, see Theorem 4.4. The proof consists in
the construction of suitable extensions having order 4 of the semihypergroups Hi . The reader can find various
extension techniques exploited in semigroup and hypergroup theory in [14,15].

Lemma 4.1 Let H be a semihypergroup, and let K be a subsemihypergroup of H such that H = K ∪ {d}. If
a ∈ K is a right zero scalar element of K and d ∈ da, then

1. Hd ⊂ {a} ∪ da;
2. d ∈ dy, for all y ∈ K .

Proof

1) For any x ∈ H let A = xd ∩ K and B = xd ∩ {d}. Using the inclusions A ⊂ K and B ⊂ {d} we obtain
xd ⊂ xda = (A ∪ B)a = Aa ∪ Ba ⊂ K a ∪ da = {a} ∪ da.

2) Let y ∈ K . If we suppose that dy ⊂ K then we arrive at the contradiction d ∈ da = d(ya) = (dy)a ⊂
K a = {a}. Hence d ∈ dy. ��

Lemma 4.2 Let H = {a, b, c, d} be a strongly simple semihypergroup such that aβb, aβc and (b, c) 
∈ β. If
K = {a, b, c} is a subsemihypergroup isomorphic to a simple semihypergroup Hi as in Theorem 3.5, for some
i = 1, . . . 5, then we have

1. da = {a, d};
2. {b, d} ⊂ db and {c, d} ⊂ dc;
3. ad = bd = cd = {a};
4. db ∈ {{b, d}, {a, b, d}} and dc ∈ {{c, d}, {a, c, d}};
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5. dd ∈ {{d}, {a, d}}.
Proof We start by observing that, by hypotheses, one has

K a = {a}, ab = {a, b}, ac = {a, c}, b ∈ bb ∩ cb, c ∈ bc ∩ cc. (15)

1. We prove the first claim by proceeding in three steps:
I) da 
⊂ K ;
II) b /∈ da and c /∈ da;
III) da 
= {d}.
I) The claim follows immediately from Corollary 2.5, since we have H − K = {d}.
II) If b ∈ da then one has c ∈ bc ⊂ (da)c and b ∈ da ⊂ d(ac). We arrive at the contradiction bβc. The
case c ∈ da is treated analogously.
III) Let us suppose by absurd that da = {d}. This leads to db = dc = {d} and consequently

d K = {d} and d H = {d} ∪ dd. (16)

Indeed, if there exists x ∈ {b, c} such that dx∩K 
= ∅, then we arrive at the contradiction {a} = (dx∩K )a ⊂
(dx)a = d(xa) = da = {d}.
Furthermore, by Lemma 4.1(1), we have ad ⊂ da ∪ {a} = {a, d}. We are led to the following three
subcases: (i) ad = {a}; (ii) ad = {d}; (iii) ad = {a, d}.

(i) If ad = {a} then dd = (da)d = d(ad) = da = {d}. Hence d H = {d} and d is a left zero scalar
element of H . This is in contradiction with Proposition 2.4 since H is strongly simple by hypothesis.

(ii) If ad = {d}, by hypotheses and Equation (15),
we have bd = b(ad) = (ba)d = ad = {d}. Analogously, we also have cd = c(ad) = (ca)d =
ad = {d}. Thus Hd = {d} ∪ dd . Since H is simple, using (16) we obtain

H = H(d H) = H({d} ∪ dd) = Hd ∪ Hdd = {d} ∪ dd ∪ ddd.

Now, if d ∈ dd then we obtain d ∈ dd ⊂ ddd and H = ddd . This would imply bβc, a contradiction
with the hypotheses. On the other hand, if d 
∈ dd then dd ⊂ K and ddd ⊂ d K = {d} by (16). As
a consequence, ddd = {d} whence K = dd . This would imply again bβc.

(iii) Let ad = {a, d}. Since by hypothesis da = {d}, from Lemma 4.1(1) we have bd ∪ cd ⊂ {a, d} and
consequently Hd = {a, d} ∪ dd . Hence, since H is simple, using (16) we have

H = H(d H) = H({d} ∪ dd)= Hd ∪ Hdd = {a, d} ∪ dd ∪ ({a, d} ∪ dd)d = {a, d} ∪ dd ∪ ddd.

By proceeding as in subcase (ii), we obtain either H = {a, d} ∪ ddd or H = {a, d} ∪ dd depending
on whether d ∈ dd or dd ⊂ K . In both cases we obtain the contradiction bβc.

Finally, from I), II) and III) we conclude that da = {a, d}.
2. From Eq. (15) we know that ab = {a, b}. Moreover, by point 1.) we have

b ∈ ab ⊂ {a, d}b = (da)b = d(ab) = d{a, b} = da ∪ db = {a, d} ∪ db.

Consequently b ∈ db. Analogously, from ac = {a, c} one also get c ∈ dc. Finally, by Lemma 4.1(2), one
has d ∈ db ∩ dc, and the claim follows.

3. From points 1.) and 2.) we have d H = H . Moreover, by Lemma 4.1(1) and point 1.), we have xd ⊂ {a, d}
for all x ∈ H . Owing to the fact that K is right-reproducible, if we suppose by absurd that d ∈ xd for all
x ∈ K , then it follows that x H = x(K ∪{d}) = x K ∪ xd = K ∪ xd = H, that is, H is right-reproducible.
This is in contradiction with the hypothesis that H is strongly simple. Hence, there exists some x ∈ K such
that xd = {a}. Using (15) we obtain the claim. Indeed we have:
• ad = (xd)d = x(dd) ⊂ x{a, d} = xa ∪ xd = {a};
• bd ⊂ (ab)d = a(bd) ⊂ a{a, d} = aa ∪ ad = {a};
• cd ⊂ (ac)d = a(cd) ⊂ a{a, d} = {a}.
Hence ad = bd = cd = {a}.

4. If c ∈ db, by point 3.) and (15) we have {b, c} ⊂ ab ∪ ac ⊂ ab ∪ a(db) = ab ∪ (ad)b = ab and bβc,
which is absurd. Hence c 
∈ db. Analogously we can prove that b 
∈ dc. Finally, by point 2.), we also have
db ∈ {{b, d}, {a, b, d}} and dc ∈ {{c, d}, {a, c, d}}.
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5. By 1.) and Lemma 4.1(1), we have dd ⊂ {a, d}. Moreover dd 
= {a} otherwise one has Hd = {a} by
3.). Consequently, from (15) we get the contradiction H = (Hd)H = aH = aK ∪ ad = K . Hence
dd ∈ {{d}, {a, d}} and the proof is complete. ��

Remark 4.3 Using Lemma 4.2, we can construct various semihypergroups having order 4 where β is not tran-
sitive. In fact, if we consider as K = {a, b, c} any semihypergroup Hi as in Theorem 3.5, with i = 1, 2, 3, 4, 5,
then we can embed K in a semihypergroup H = {a, b, c, d} by extending the hyperproduct of K as follows:

ad = bd = cd = {a}, da = {a, d}.

The products db, dc and dd, which are constrained by Lemma 4.2, can be chosen from the following tables:
If K ∼= H1, H3, H5 then

db dc dd

{b, d} {c, d} {d}
{b, d} {a, c, d} {d}

{a, b, d} {c, d} {d}
{a, b, d} {a, c, d} {d}
{b, d} {c, d} {a, d}

{a, b, d} {c, d} {a, d}
{b, d} {a, c, d} {a, d}

{a, b, d} {a, c, d} {a, d}

(17)

if K ∼= H2 then

db dc dd

{b, d} {c, d} {d}
{a, b, d} {c, d} {d}
{a, b, d} {a, c, d} {d}
{b, d} {c, d} {a, d}

{a, b, d} {c, d} {a, d}
{a, b, d} {a, c, d} {a, d}

(18)

and if K ∼= H4 then

db dc dd

{b, d} {c, d} {d}
{a, b, d} {a, c, d} {d}
{b, d} {c, d} {a, d}

{a, b, d} {a, c, d} {a, d}

(19)

The cases in table (17) are all those possible due to Lemma 4.2. The cases listed in the tables (18) and (19)
take into account the following properties, that must be considered when H extends H2 or H4:

• If cb = {b} then a ∈ dc ⇒ a ∈ db. Indeed, it holds a ∈ ad ⊂ (dc)b = d(cb) = db.
• If bc = {c} then a ∈ db ⇒ a ∈ dc. Indeed, it holds a ∈ ac ⊂ (db)c = d(bc) = dc.

By direct verification, the hyperproduct in H as defined by all cases listed in (17), (18) and (19) is associa-
tive. Furthermore, the resulting semihypergroups H and their transposed semihypergroups H T are strongly
simple and the relation β is not transitive. Hence, we obtained the following result:

Theorem 4.4 The least order for which there exists a strongly simple semihypergroup where β is not transitive
is 4.
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5 The relation β in 0-simple semihypergroups

In semigroup theory, a relevant family is that of 0-simple semigroups [17]. This concept has been extended in
[18] to semihypergroups, see Definition 2.2. Obviously, a 0-simple semihypergroup is not simple. Hence, the
analysis carried out in Sect. 4 (in particular, concerning the transitivity of β) cannot be extended immediately
to 0-simple semihypergroups.

In this section we present all 0-simple semihypergroups having order 3 where β is not transitive, see The-
orem 5.6. Owing to Remark 3.1, hereafter we can restrict ourselves to the case where H = {a, b, c} has a zero
scalar element, aβb, aβc and (b, c) /∈ β.

Lemma 5.1 If H = {a, b, c} is a 0-simple semihypergroup where aβb, aβc and (b, c) /∈ β, then the zero
element of H is a.

Proof Proceeding by absurd, suppose that the zero element of H is b. As already shown in Remark 3.1, we
have aa = {a}. Furthermore, by the equalities π2) and π3) in the same Remark, we have ac ∪ ca ⊂ {a, b}.

Now, if cc ⊂ {a, b} then H H ⊂ {a, b}, and we obtain (a, c) /∈ β, a contradiction. On the other hand,
if c ∈ cc then, by π4), one has b /∈ (ac ∪ ca), otherwise bβc. Hence ac = ca = {a}. Finally, we obtain
H = HaH = {a, b}, impossible. This completes the proof. ��
Lemma 5.2 If H = {a, b, c} is a 0-simple semihypergroup with aβb, aβc and (b, c) /∈ β, then xy 
= {a} for
all x, y ∈ {b, c}.
Proof We proceed by absurd and suppose that xy = {a} for some x, y ∈ {b, c}. We split the proof in two
cases: 1. x = y and 2. x 
= y.

1. Without loss of generality, we can suppose that x = y = b. Then we have H = HbH = ({a} ∪ cb)H =
{a} ∪ cbc. Hence {b, c} ⊂ cbc and we arrive at the contradiction bβc.

2. Without loss of generality, we can suppose that x = b and y = c. From Lemma 5.1 we have:

{a} = aH = (bc)H = b(cH) = {a} ∪ b(cb ∪ cc).

Now, if b ∈ cb ∪ cc then necessarily bb = {a}, and we fall back in the preceding case. On the other hand,
if cb ∪ cc ⊂ {a, c} then we have H = HcH = H{a, c} ⊂ {a, c}, impossible. ��

Proposition 5.3 There exists exactly one 0-simple semihypergroup H = {a, b, c} where β is not transitive
and bb = {c}. Its hyperproduct table is the following:

a b c
a a a a
b a c a, b
c a a, b a, c

Proof In the stated hypotheses, the zero element cannot be b, otherwise we would have bb = {b}. Moreover,
it cannot be c because this would contradict Lemma 5.2. Hence, the zero element is a and, by Lemma 5.1, we
have aβb, aβc and (b, c) /∈ β.

Note that bc = b(bb) = (bb)b = cb, hence bc = cb. We are led to the following partial table:

a b c
a a a a
b a c X
c a X

If X = {a, b} then we must have cc = (bb)c = b(bc) = b{a, b} = {a, c}, and the table is completed as
claimed. It remains to prove that X = {a, b}.

Firstly, note that |cb| 
= 1. Indeed, if |cb| = 1 then |cc| = |c(bb)| = |(cb)b| = 1, since the second column
of the hyperproduct table is made of singletons. As a consequence, all hyperproducts reduce to singletons, H
is a semigroup and β is transitive, a contradiction.

Owing to the hypotheses placed on β, the remaining cases are cb = {a, b} and cb = {a, c}. If cb = {a, c}
then cc = (bb)c = b(bc) = b{a, c} = {a, c}, whence b /∈ H H, impossible. Hence, the only possible case is
bc = {a, b}, which leads to a truly associative hyperproduct, and the proof is complete. ��
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Lemma 5.4 If H = {a, b, c} is a 0-simple semihypergroup with aβb, aβc and (b, c) /∈ β, then

1. if bc = {b} or cb = {b} then cc = {c},
2. if bc = {c} or cb = {c} then bb = {b}.
Proof It is sufficient to prove only the case where bc = {b}, since the other cases follow by transposition or
by interchanging the roles of b and c.

In this case we have {b} = (bc)c = b(cc). Now, a /∈ cc else we obtain the contradiction {a} = ba ⊂
b(cc) = {b}. If b ∈ cc then cc = {b} since (b, c) /∈ β. As a consequence bb = {b} and cb = c(bc) = (cb)c ⊂
Hc = {a, b}. This implies H = H H ⊂ {a, b}, impossible. Finally we must have cc = {c} and the proof is
complete. ��
Proposition 5.5 In the same hypotheses of Lemma 5.4, the partial table

a b c
a a a a
b a a, c
c a

can be completed only in the following five ways:

bc cb cc

{b} {b} {c}
{a, b} {b} {c}
{b} {a, b} {c}

{a, b} {a, b} {c}
{a, b} {a, b} {a, c}

(20)

Proof If bc ⊂ {a, c} then H = HbH = H{a, c} = {a}∪bc ∪ cc. Hence b ∈ cc and we arrive at the following
contradiction:

b ∈ cc ⊂ (bb)c = b(bc) ⊂ b{a, c} ⊂ {a, c}.
Hence b ∈ bc and we have either bc = {b} or bc = {a, b}. Furthermore, cb ⊂ (bb)b = b(bb) = b{a, c} =
{a, b} and, by Lemma 5.2, we have either cb = {b} or cb = {a, b}. Whenever |bc| = 1 or |cb| = 1, Lemma
5.4 lead us to complete the hyperproduct table as specified in the first three rows of (20). Finally, when
bc = cb = {a, b} we obtain cc ⊂ (bb)c = b(bc) = {a, c}. Again by Lemma 5.2 we have either cc = {c} or
cc = {a, c}, and we obtain the last two rows in (20). Associativity of resulting hyperproducts are immediately
verified. ��
At this point, only very few cases are left. Indeed, taking into account the preceding Propositions, it remains to
consider when either bb = {b} or bb = {a, b} and, moreover, either cc = {c} or cc = {a, c}. In fact, the case
cc = {b} is isomorphic to the one considered in Proposition 5.3, and the case cc = {a, c} is isomorphic to the
one considered in Proposition 5.5. Furthermore, Lemma 5.4 gives us further restrictions on the aforementioned
cases, that can be tackled individually. We refrain from giving explicit proofs, which can be carried out by
arguments similar to the ones exploited in the aforementioned Propositions. The conclusion is that, apart of
isomorphisms, there are 8 0-simple semihypergroups outside the cases considered in Propositions 5.3 and
5.5. Their hyperproduct tables are defined in the following list, neglecting the obvious products of the form
xa = ax = {a}:

bb bc cb cc

{b} {c} {a, b} {a, c}
{b} {a, b} {a, c} {c}
{b} {a, b} {a, c} {a, c}

{a, b} {a, b} {a, c} {a, c}
{b} {a, b} {c} {a, c}
{b} {a, c} {a, b} {c}
{b} {a, b} {a, c} {a, c}

{a, b} {a, c} {a, b} {a, c}

(21)
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Note that the semihypergroups defined by the last 4 rows are the transposed semihypergroups of those defined
by the first 4 rows. All preceding results in this Section, in particular, Proposition 5.3, Proposition 5.5 and the
table (21), can be summarized in the following result:

Theorem 5.6 Apart of isomorphisms, there exist exactly 14 0-simple semihypergroups having order 3 where
β is not transitive. Their hyperproduct tables are given in Proposition 5.3, Proposition 5.5 and (21).

6 The relations γ and γ ∗ in simple and 0-simple semihypergroups

The relations γ and γ ∗ were introduced in [11,12] in the context of hypergroups, in order to characterize the
derived hypergroup by means of the notion of strongly regular equivalence. In particular, in [12] a geometric
interpretation of γ and γ ∗ is found, showing their relationships with the concepts of geometric space and polyg-
onal. Subsequently, various authors exploited the concept of geometric space and extended the relation γ to
other hyperstructures, see e.g., [1,4]. In what follows, we summarize the relationship between semihypergroups
and geometric spaces [4,11,12].

A geometric space is a pair (S,B) where S is a nonempty set whose elements are called points, and B is
a family of subsets of S, whose elements are called blocks. A polygonal is a n-tuple (B1, . . . , Bn) of blocks
such that Bi ∩ Bi+1 
= ∅ for all i = 1, 2, . . . , n − 1. On S we can define the relations ∼,≈ as follows:

• x ∼ y ⇐⇒ x = y or there exists B ∈ B such that {x, y} ⊂ B.
• x ≈ y ⇐⇒ x = y or there exists a polygonal (B1, . . . , Bn) such that x ∈ B1 and y ∈ Bn .

The relation ≈ is the transitive closure of ∼. Moreover, if [x] denotes the ≈-class of an element x ∈ S and
B1, B2 are two blocks in B, then

x ∈ B1 ∪ B2 and B1 ∩ B2 
= ∅ �⇒ B1 ∪ B2 ⊂ [x]. (22)

A geometric space is strongly transitive if the family B is a covering of S and, for all pair (A, B) of blocks in
B one has

A ∩ B 
= ∅ and x ∈ B �⇒ ∃ C ∈ B : A ∪ {x} ⊂ C.

We recall from [12] the following theorem:

Theorem 6.1 If the geometric space (S,B) is strongly transitive then ∼ is transitive and ∼ coincides
with ≈.

To every semihypergroup H we can associate the geometric space (H, Pσ (H)) whose blocks are defined
as follows: For all integer n ≥ 1 and for all n-tuple (z1, . . . zn) ∈ Hn, we set B(z1, z2, . . . , zn) =
∪σ∈Sn zσ(1) · · · zσ(n). In particular, B(z1) = {z1}. The blocks in Pσ (H) have the following properties, see
[12]:

1. B(z1, z2, . . . , zn) = B(zσ(1), zσ(2), . . . , zσ(n)), for all σ ∈ Sn;
2. zB(z1, . . . , zn)z′ ⊂ B(z, z1, . . . , zn, z′);
3. If zk ∈ x1 · · · xm then B(z1, z2, . . . , zn) ⊂ B(z1, . . . , zk−1, x1, . . . , xm, zk+1, . . . , zn);
4. B(z1, . . . , zn) · B(w1, . . . , wm) ⊂ B(z1, . . . , zn, w1, . . . , wm).

Obviously, the relations γ, γ ∗ are the relations ∼,≈ defined on H arising from the blocks of Pσ (H). We recall
from [12, Thm. 3.4] that if H is a hypergroup then the geometric space (H, Pσ (H)) is strongly transitive, thus
∼, that is γ, is transitive. Recently in [13] it was proved that γ is transitive even if H is a finite semi-hypergroup
of type U on the right. In what follow, we will show that γ is transitive is all simple semihypergroups, see
Theorem 6.4. We remark that this fact is not necessarily true if H is only 0-simple. Indeed, for example, the
0-simple semihypergroup shown in Proposition 5.3 is commutative, thus β = γ, whence γ is not transitive. In
the next theorem we characterize all 0-simple semihypergroups whose associated geometric space (H, Pσ (H))
is strongly transitive.

Theorem 6.2 If H is a 0-simple semihypergroup and B0 = {B ∈ Pσ (H) : B ⊂ γ ∗(0)} then the following
conditions are equivalent:

1. The geometric space (H, Pσ (H)) is strongly transitive.
2. For any block B ∈ B0 and for all x ∈ γ ∗(0) there exists a block C ∈ B0 such that B ∪ {x} ⊂ C.
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Proof 1. ⇒ 2. By Theorem 6.1 we have that γ is transitive. Hence, for all B ∈ B0, for all y ∈ B and for all
x ∈ γ ∗(0) we have yγ x . As a consequence, there exists a block B ′ ∈ Pσ (H) such that {y, x} ⊂ B ′. Since
B ∩ B ′ 
= ∅ and the geometric space (H, Pσ (H)) is strongly transitive, there exists a block C ∈ Pσ (H) such
that B ∪ {x} ⊂ C . Obviously C ∈ B0 as 0 ∈ B ⊂ C .

2. ⇒ 1. Let B1 = B(z1, . . . , zm) and B2 = B(x1, . . . , xn) be two blocks of Pσ (H) such that B1 ∩ B2 
= ∅
and moreover let x ∈ B2. Our goal is to prove that there exists a block C ∈ Pσ (H) such that B1 ∪ {x} ⊂ C .
We distinguish the two cases I) 0 ∈ B1 ∪ B2 and II) 0 
∈ B1 ∪ B2.

I) By (22) we have B1 ∪ B2 ⊂ γ ∗(0) because 0 ∈ B1 ∪ B2 and B1 ∩ B2 
= ∅. Hence, in particular we have
B1 ∈ B0. Finally, by hypothesis, there exists a block C ∈ B0 ⊂ Pσ (H) such that B1 ∪ {x} ⊂ C .

II) We have x 
= 0 since x ∈ B2 and 0 
∈ B1 ∪ B2. Moreover, if b ∈ B1 ∩ B2 then b 
= 0. Since H is
0-simple, H x H = H = HbH . Hence there exist two pairs (y, y′) and (c, c′) of elements of H such that
zm ∈ yxy′ and x ∈ cbc′. Then, using the foregoing properties of the blocks in Pσ (H) we obtain

x ∈ cbc′ ⊂ cB(z1, . . . , zm)c′

⊂ B(c, z1, . . . , zm, c′)
⊂ B(c, z1, . . . , zm−1, y, x, y′, c′)
= B(z1, . . . , zm−1, y, c, x, c′, y′) ⊂ B(z1, . . . , zm−1, y, c, x1, . . . , xn, c′, y′).

Moreover, we have

B(z1, . . . , zm) ⊂ B(z1, . . . , zm−1, y, x, y′)
⊂ B(z1, . . . , zm−1, y, c, b, c′, y′) ⊂ B(z1, . . . , zm−1, y, c, x1, . . . , xn, c′, y′).

Hence B(z1, . . . , zm) ∪ {x} ⊂ B(z1, . . . , zm−1, y, c, x1, . . . , xn, c′, y′) and the proof is complete. ��
From the previous theorem we obtain a sufficient condition for the transitivity of γ in a 0-simple semihy-

pergroup:

Corollary 6.3 If H is a 0-simple semihypergroup fulfilling one of the hypotheses in Theorem 6.2 then γ is
transitive.

Proof The claim follows immediately from Theorem 6.1 and the fact that γ is the relation ∼ defined on the
geometric space (H, Pσ (H)). ��

We conclude this section by proving that the relation γ is transitive in all simple semihypergroups. In order
to attain that result, we make use of a special construction which is well known in the framework of semigroup
theory, see e.g., [17]. If H is a semihypergroup then we denote by H0 the semihypergroup built by adding a
zero scalar element 0 /∈ H to H ; the hyperproduct in H0 extends naturally the one defined in H . We will refer
to H0 as the natural 0-extension of H . The following propositions are immediate:

• H is a simple semihypergroup if and only if H0 is 0-simple.
• Denote by βH and βH0 the fundamental relations β associated respectively to H and H0. Then βH0 =

βH ∪ {(0, 0)}. In particular, βH0 is transitive if and only if βH is transitive.
• Denote by γH and γH0 the fundamental relations γ associated respectively to H and H0. Then γH0 =

γH ∪ {(0, 0)}. In particular, γH0 is transitive if and only if γH is transitive.

With the help of the natural 0-extension of a semihypergroup, the proof of our last theorem becomes almost
immediate; the reader could note that, in order to prove a relevant property of simple semihypergroups, we
rely on a related property on 0-simple semihypergroups. Actually, that procedure can help to extend the proof
to different objects, and has been used also elsewhere, see e.g., [17,18], in related contexts.

Theorem 6.4 If H is a simple semihypergroup then the relation γ is transitive.

Proof Since H is simple, then its natural 0-extension H0 is 0-simple. Moreover, γ ∗
H0

(0) = {0}. As a conse-
quence, H0 fulfills the second condition of Theorem 6.2, whence γH0 is transitive thanks to Corollary 6.3, and
the claim follows. ��

As recalled by the first example in Sect. 2, the class of simple semihypergroups includes, as special sub-
classes, that of hypergroups and that of semihypergroups of type U on the right. Transitivity of γ in such
subclasses has been shown in [11] and [13], respectively. Hence, the foregoing theorem provides an extension
of the above mentioned results. Moreover, it is worth noting that all results in this section obviously hold also
for simple and 0-simple semigroups, as defined e.g., in [17].
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7 Conclusions and open problems

The class of semihypergroups is huge, even if one considers semihypergroups having rather small order. Within
this class there are instances having rather unexpected properties, and certain implications that hold true e.g.,
for semigroups or hypergroups do not hold on semihypergroups. We believe that the manifold examples shown
in this paper may improve knowledge of semihypergroups and help further investigations in this subject.

For example, the 34 semihypergroups described in Remark 4.3, see (17), (18) and (19), and their respec-
tive transposed semihypergroups, are strongly simple semihypergroups having a subsemihypergroup K =
{a, b, c} where β is not transitive. Moreover, they also have two subsemihypergroups, K1 = {a, b, d} and
K2 = {a, c, d}, where β is transitive. This fact opens the problem to prove whether or not there exists a
strongly simple semihypergroup all whose subsemihypergroups K with |K | ≥ 3 have a relation β which is
not transitive.
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