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Abstract: In this paper, we show a new construction of hypergroups that, under appropriate
conditions, are complete hypergroups or non-complete 1-hypergroups. Furthermore, we classify the
1-hypergroups of size 5 and 6 based on the partition induced by the fundamental relation β. Many of
these hypergroups can be obtained using the aforesaid hypergroup construction.
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1. Introduction

Hypercompositional algebra is a branch of Algebra experiencing a surge of activity
nowadays that concerns the study of hyperstructures, that is, algebraic structures where
the composition of two elements is a set rather than a single element [1]. The subjects,
methods, and goals of the hypercompositional algebra are very different from those of
classic algebra. However, the two fields are connected by certain equivalence relations,
called fundamental relations [2,3]. Through fundamental relations, the analysis of algebraic
hyperstructures can make use of the wealth of tools typical of classical algebra. Indeed,
fundamental relations are peculiar equivalence relations defined on hyperstructures, in
such a way that the associated quotient set is one of the classical algebraic structures.

More precisely, a fundamental relation is the smallest equivalence relation defined
on the support of a hyperstructure such that the corresponding quotient set is a classical
structure having operational properties analogous to those of the hyperstructure [4–7]. For
example, the quotient structure modulo the equivalence β∗ defined on a semihypergroup
(or a hypergroup) is a semigroup (or a group, respectively) [2,8–10]. Analogous definitions
and results are also known in hyperstructures endowed with more than one operation, see
e.g., [11]. Moreover, hypergroups can be classified according to the height of a β∗-class,
that is, the least number of order-2 hyperproducts that can cover that class, see [12].

If (H, ◦) is a hypergroup and ϕ : H 7→ H/β∗ is the canonical projection then the kernel
ωH = ϕ−1(1H/β∗) is the heart of (H, ◦). The heart of a hypergroup plays a very important
role in hypergroup theory. Indeed, if we know the structure of ωH then we have detailed
information on the partition determined by relation β∗ since β∗(x) = ωH ◦ x = x ◦ωH , for
all x ∈ H. When the heart of a hypergroup (H, ◦) has only one element ε, this element is also
the identity of (H, ◦), since x ∈ β∗(x) = x ◦ ε = ε ◦ x. According to a definition introduced
by Corsini in [4], the hypergroups whose heart has size 1 are called 1-hypergroups. In ([12]
Theorem 2), we characterized the 1-hypergroups in terms of the height of their heart,
and in [13] Sadrabadi and Davvaz investigated sequences of join spaces associated with
non-complete 1-hypergroups.

In this paper, we deepen the knowledge of 1-hypergroups. In particular, we classify
the 1-hypergroups of cardinalities up to 6 on the basis of the partition of H induced by
β∗. This technique allows us to explicitly construct all 1-hypergroups of order 5, and
enumerate those of order 6 by means of scientific computing software. We recall that
the study of small-size algebraic hyperstructures is both a practical tool to analyze more
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elaborate structures and a well-established research topic in itself. In fact, the enumeration
and classification of hyperstructures having small cardinality have made it possible to
solve various relevant existence issues in hyperstructure theory, see e.g., [14–17].

The plan of this paper is the following: In the forthcoming Section 2, we introduce
the basic definitions, notations, and fundamental facts to be used throughout the paper.
In Section 3, we present a new construction of hypergroups that, under appropriate hy-
potheses, are complete hypergroups or non-complete 1-hypergroups. Moreover, we prove
a few results concerning the β-classes of 1-hypergroups and sufficient conditions for 1-
hypergroups to be complete, which are relevant in subsequent sections. In Section 4, we
determine the 1-hypergroups of size 5, up to isomorphisms. In Section 5 we classify the
1-hypergroups of size 6, up to isomorphisms. The 1-hypergroups of size 4, and many
1-hypergroups of size 5 and 6, can be determined by the construction defined in Section 3.
The paper ends with some conclusions and directions for future research in Section 6.

2. Basic Definitions and Results

Let H be a non-empty set and let P∗(H) be the set of all non-empty subsets of H. A
hyperproduct ◦ on H is a map from H×H to P∗(H). For all x, y ∈ H, the subset x ◦ y is the
hyperproduct of x and y. If A, B are non-empty subsets of H then A ◦ B =

⋃
x∈A,y∈B x ◦ y.

A semihypergroup is a non-empty set H endowed with an associative hyperproduct
◦, that is, (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ H. We say that a semihypergroup (H, ◦) is
a hypergroup if for all x ∈ H, we have x ◦ H = H ◦ x = H, the so-called reproducibility
property.

A non-empty subset K of a semihypergroup (H, ◦) is called a subsemihypergroup of
(H, ◦) if it is closed with respect to the hyperproduct ◦, that is, x ◦ y ⊆ K for all x, y ∈ K.
A non-empty subset K of a hypergroup (H, ◦) is called a subhypergroup of (H, ◦) if
x ◦ K = K ◦ x = K, for all x ∈ K. If a subhypergroup is isomorphic to a group, then we say
that it is a subgroup of (H, ◦).

Given a semihypergroup (H, ◦), the relation β∗ in H is the transitive closure of the
relation β =

⋃
n≥1 βn where β1 is the diagonal relation in H and, for every integer n > 1,

βn is defined recursively as follows:

xβny ⇐⇒ ∃(z1, . . . , zn) ∈ Hn : {x, y} ⊆ z1 ◦ z2 ◦ · · · ◦ zn.

We let β∗(x) denote the β∗-class of x ∈ H. The relations β and β∗ are among the
best known fundamental relations [3]. Their relevance in hyperstructure theory stems
from the following facts [2]: If (H, ◦) is a semihypergroup (respectively, a hypergroup)
then the quotient set H/β∗ equipped with the operation β∗(x) ⊗ β∗(y) = β∗(z) for all
x, y ∈ H and z ∈ x ◦ y is a semigroup (respectively, a group). Moreover, the relation β∗ is
the smallest strongly regular equivalence on H such that the quotient H/β∗ is a semigroup
(resp., a group). The canonical projection ϕ : H 7→ H/β∗ is a good homomorphism,
that is, ϕ(x ◦ y) = ϕ(x) ⊗ ϕ(y) for all x, y ∈ H. The relations β and β∗ are also useful
to introduce notable families of semihypergroups and hypergroups, including the fully
simple semihypergroups [18–20] and the 0-simple semihypergroups [14,21–23], having
interesting connections with partially ordered sets and integer sequences. Furthermore,
we recall from [8,10] that if (H, ◦) is a hypergroup then β is transitive, so that β = β∗ in
every hypergroup.

If (H, ◦) is a hypergroup then H/β∗ is a group and the kernel ωH = ϕ−1(1H/β∗) of
ϕ is the heart of (H, ◦). Furthermore, if |ωH | = 1 then (H, ◦) is a 1-hypergroup. For later
reference, we collect in the following theorem a couple of classic results concerning the
heart of a hypergroup, see [2,4].

Theorem 1. Let (H, ◦) be a hypergroup. Then,

1. β(x) = x ◦ωH = ωH ◦ x, for all x ∈ H;
2. (x ◦ y) ∩ωH 6= ∅⇐⇒ (y ◦ x) ∩ωH 6= ∅, for all x, y ∈ H.
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If A is a non-empty set of a semihypergroup (H, ◦) then we say that A is a complete
part if it fulfills the following condition: for every n ∈ N− {0} and (x1, x2, . . . , xn) ∈ Hn,

(x1 ◦ · · · ◦ xn) ∩ A 6= ∅ =⇒ (x1 ◦ · · · ◦ xn) ⊆ A.

For every non-empty set X of H, the intersection of all the complete parts containing
X is called the complete closure of X and is denoted with C(X). Clearly, X is a complete
part of (H, ◦) if and only if C(X) = X. If (H, ◦) is a semihypergroup and ϕ : H 7→ H/β∗ is
the canonical projection then, for all non-empty set A ⊆ H, we have C(A) = ϕ−1(ϕ(A)).
Moreover, if (H, ◦) is a hypergroup then

C(A) = ϕ−1(ϕ(A)) = A ◦ωH = ωH ◦ A.

A semihypergroup or hypergroup (H, ◦) is complete if x ◦ y = C(x ◦ y) for all x, y ∈ H.
If (H, ◦) is a complete (semi-)hypergroup then

x ◦ y = C(a) = β∗(a),

for every x, y ∈ H and a ∈ x ◦ y. Recently, Sonea and Cristea analyzed in [24] the commu-
tativity degree of complete hypergroups, stressing their similarities and differences with
respect to group theory. The interested reader can find all relevant definitions, properties
and applications of hyperstructures and fundamental relations, even in more abstract
contexts, also in [4,25–30].

In what follows, if (H, ◦) is a finite hypergroup and |H| = n then we set H = {1, 2, . . . , n}.
Moreover, if (H, ◦) is a (possibly infinite) 1-hypergroup then we adopt the convention
ωH = {1}.

3. Main Results

In this section, we prove some results which will be used to classify the 1-hypergroups
of sizes 4, 5 and 6. To this aim, we now give a construction of hypergroups which, under
certain conditions, allows us to determine non-complete 1-hypergroups, starting from
complete 1-hypergroups.

3.1. A New Construction

Let (G, ·) be a group with |G| ≥ 2 and let F = {Ak}k∈G be a family of non-empty and
pairwise disjoint sets indexed by G. Let i, j ∈ G− {1G} be not necessarily distinct elements
and let ϕ : Ai × Aj 7→ P∗(Aij) be any function such that for all a ∈ Ai and b ∈ Aj⋃

x∈Aj

ϕ(a, x) =
⋃

x∈Ai

ϕ(x, b) = Aij. (1)

As a shorthand, introduce the infix notation ? : Ai × Aj 7→ Aij defined by a ? b =
ϕ(a, b) for every a ∈ Ai and b ∈ Aj. This operation is naturally extended to sets as follows:
for X ∈ P∗(Ai) and Y ∈ P∗(Aj) let

a ? Y =
⋃

y∈Y
a ? y, X ? b =

⋃
x∈X

= x ? b, X ? Y =
⋃

x∈X,y∈Y
x ? y.

Hence, the condition (1) can be reformulated as Ai ? b = a ? Aj = Aij. Now, let
H =

⋃
k∈G Ak and consider the hyperproduct ◦ : H × H 7→ P∗(H) defined as follows: for

all x, y ∈ H let

x ◦ y =

{
Ars if x ∈ Ar, y ∈ As and (r, s) 6= (i, j),
x ? y if x ∈ Ai and y ∈ Aj.

The following result shows the usefulness of this construction.
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Proposition 1. In the previous notation,

1. for every r, s ∈ G and x ∈ As we have Ar ◦ x = Ars and x ◦ Ar = Asr;
2. the hyperproduct ◦ is associative: for every r, s, t ∈ G, x ∈ Ar, y ∈ As and z ∈ At, we have

(x ◦ y) ◦ z = A(rs)t = Ar(st) = x ◦ (y ◦ z);

3. for every z1, z2, . . . , zn ∈ H with n ≥ 3 there exists r ∈ G such that z1 ◦ z2 ◦ · · · ◦ zn = Ar;
4. (H, ◦) is a hypergroup such that β = β2;
5. for every x ∈ H, x ∈ Ak ⇐⇒ β(x) = Ak;
6. H/β ∼= G and ωH = A1G ;
7. if |A1G | = 1 then (H, ◦) is a 1-hypergroup;
8. (H, ◦) is complete if and only if a ? b = Aij for every a ∈ Ai and b ∈ Aj.

Proof. In the stated hypothesis we have:

1. Let r, s ∈ G and x ∈ As. If r 6= i or s 6= j then Ar ◦ x =
⋃

y∈Ar (y ◦ x) = Ars. Otherwise,
if r = i and s = j then Ar ◦ x = Ai ◦ x = Ai ? x = Aij by Equation (1). The identity
x ◦ Ar = Asr can be derived by similar arguments.

2. For every r, s, t ∈ G and x ∈ Ar, y ∈ As and z ∈ At, we have

(r, s) 6= (i, j) =⇒ (x ◦ y) ◦ z = Ars ◦ z = A(rs)t.

Moreover, since j 6= 1G and the sets of the family F are pairwise disjoint, if (r, s) = (i, j)
then Aij 6= Ai and a ◦ z = A(ij)t = A(rs)t, for every a ∈ x ? y ⊆ Aij. Therefore,

(x ◦ y) ◦ z = (x ? y) ◦ z =
⋃

a∈x?y
a ◦ z = A(rs)t.

The identity x ◦ (y ◦ z) = A(rs)t follows analogously.
3. It suffices to apply points 1. and 2. above and proceed by induction on n.
4. By 2., (H, ◦) is a semihypergroup. To prove that it is a hypergroup it remains to prove

that the hyperproduct ◦ is reproducible. Let x ∈ H. If x ∈ Ai then

x ◦ H =
⋃

y∈H
x ◦ y =

( ⋃
y∈Aj

x ◦ y
)⋃( ⋃

y∈H−Aj

x ◦ y
)

=
(

x ◦ Aj

)⋃( ⋃
r∈G−{j}

Air

)
= Aij ∪ (H − Aij) = H.

If x ∈ Ah with h 6= i then x ◦ H =
⋃

y∈H x ◦ y =
⋃

r∈G Ahr = H because hG = G.
Therefore x ◦ H = H. The identity H ◦ x = H can be shown analogously, by consid-
ering separately the cases x ∈ Aj and x ∈ H − Aj. Therefore ◦ is reproducible and
(H, ◦) is a hypergroup. Consequently, we have the chain of inclusions

β1 ⊆ β2 ⊆ · · · ⊆ βn ⊆ · · ·

Now, let x, y ∈ H be such that xβy. Hence, there exists n ≥ 3 such that xβny. By
point 3., there exists r ∈ G such that {x, y} ⊆ Ar. For every a ∈ A1 we have
{x, y} ⊆ Ar = x ◦ a and we obtain xβ2y.

5. Let x ∈ Ak. If a ∈ A1 then Ak = x ◦ a, and so y ∈ Ak implies yβ2x. Conversely, if
yβ2x then there exist a, b ∈ H such that {x, y} ⊆ a ◦ b. From the definition of the
hyperproduct ◦ it follows that there exists r ∈ G such that a ◦ b ⊆ Ar. Therefore,
since x ∈ Ak ∩ Ar and the sets of the family F are pairwise disjoint, we obtain
y ∈ a ◦ b ⊆ Ar = Ak. Finally, Ak = β(x) because β2 = β.

6. The application f : G 7→ H/β such that f (k) = Ak is a group isomorphism. Moreover,
since 1H/β = f (1G) = A1G , we conclude ωH = A1G .
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7. The claim follows immediately from points 4. and 6.
8. Trivial.

We stress the fact that the hypothesis i, j 6= 1G placed in the above construction is
essential for the validity of Proposition 1. In fact, if that hypothesis is not fulfilled then
the hyperproduct ◦ defined by our construction may not be associative, as shown by the
following example.

Example 1. Let G ∼= Z2, (i, j) = (2, 1), A1 = {a, b}, and A2 = {c, d}. Consider the function
ϕ : A2 × A1 7→ P∗(A2) represented by the following table:

? a b

c c d
d d c

In this case, the previous construction determines the following hyperproduct table:

◦ a b c d

a A1 A1 A2 A2
b A1 A1 A2 A2
c c d A1 A1
d d c A1 A1

We have c ? A1 = d ? A1 = A2 and A2 ? a = A2 ? b = A2, hence the hyperproduct ◦ is not
associative because

(c ◦ a) ◦ a = {c} ⊂ A2 c ◦ (a ◦ a) = c ◦ A1 = A2.

Remark 1. The complete hypergroups have been characterized by Corsini in [4] by means of a
construction very similar to ours. In fact, the above construction reduces to the one in [4] if the
condition in Equation (1) is replaced by ϕ(a, b) = Aij for every a ∈ Ai and b ∈ Aj. In that case,
the hypergroup thus produced is complete.

3.2. Auxiliary Results

Now, we prove two results that are valid in every hypergroup. Recall that in every
hypergroup the relation β is an equivalence coinciding with β∗ [8,10].

Proposition 2. Let (H, ◦) be a hypergroup. For all x, y ∈ H, x ◦ β(y) = β(x) ◦ β(y) = β(x) ◦ y.

Proof. By Theorem 1(1) we have x ◦ β(y) = x ◦ (ωH ◦ ωH ◦ y) = (x ◦ ωH) ◦ (ωH ◦ y) =
β(x) ◦ β(y) = β(x) ◦ (ωH ◦ y) = (β(x) ◦ωH) ◦ y = β(x) ◦ y.

Proposition 3. Let (H, ◦) be a hypergroup. If a is an elements of H such that β(a) = {a} then
both a ◦ b and b ◦ a are β-classes, for all b ∈ H.

Proof. By Proposition 2, a ◦ b = β(a) ◦ b = β(a) ◦ β(b). The identity b ◦ a = β(b) ◦ β(a) is
obtained analogously.

The next results concern the properties of 1-hypergroups.

Corollary 1. Let (H, ◦) be a 1-hypergroup. If there exists only one β-class of size greater than 1
then H is complete.



Mathematics 2021, 9, 108 6 of 17

Proof. Let β(x) be the only β-class with |β(x)| > 1. By Proposition 3, we only have to
prove that if a ∈ β(x) then both a ◦ b and b ◦ a are β-classes, for all b ∈ H. Let ϕ : H 7→ H/β
be the canonical projection and c ∈ a ◦ b. We prove that a ◦ b = β(c). If |β(c)| = 1 then
a ◦ b = β(c). If |β(c)| > 1 then β(c) = β(x) = β(a). Consequently,

ϕ(x) = ϕ(c) = ϕ(a)⊗ ϕ(b) = ϕ(x)⊗ ϕ(b),

hence ϕ(b) = 1H/β and we have b ∈ ωH = {1}. Finally, a ◦ b = a ◦ 1 = β(a) = β(c).
Analogous arguments can prove that also b ◦ a is a β-class.

Remark 2. If H is not a complete 1-hypergroup and H owns exactly two β-classes, β(a) and β(b),
of size greater than 1, then β(a) ◦ β(a) = β(b) or β(b) ◦ β(b) = β(a).

From Corollary 1 we get the following results.

Proposition 4. Let (H, ◦) be a finite 1-hypergroup. If |H/β| = p and there exists a β-class of
size |H| − p + 1, then H is a complete hypergroup.

The previous proposition allows us to find a simple proof to a result shown in [4]
providing a taxonomy of all 1-hypergroups of size up to 4.

Theorem 2. If (H, ◦) is 1-hypergroup and |H| ≤ 4 then (H, ◦) is a complete hypergroup. More-
over, (H, ◦) is either a group or is one of the hypergroups described by the following three hyper-
product tables, up to isomorphisms:

◦ 1 2 3

1 1 2, 3 2, 3
2 2, 3 1 1
3 2, 3 1 1

◦ 1 2 3 4

1 1 2, 3, 4 2, 3, 4 2, 3, 4
2 2, 3, 4 1 1 1
3 2, 3, 4 1 1 1
4 2, 3, 4 1 1 1

◦ 1 2 3 4

1 1 2, 3 2, 3 4
2 2, 3 4 4 1
3 2, 3 4 4 1
4 4 1 1 2, 3

Proof. Let (H, ◦) be a 1-hypergroup of size ≤ 4 that is not a group. Two cases are possible:
(i) |H| = 3 and |H/β| = 2; (ii) |H| = 4 and |H/β| ∈ {2, 3}. In both cases (H, ◦) is a
complete 1-hypergroup by Proposition 4. The corresponding hyperproduct tables are
derived from Remark 1.

Proposition 5. Let (H, ◦) be a 1-hypergroup and let a, b be elements of H such that β(a) ◦ β(b) = {1}
and β(a) ◦ β(a) = β(b). Then,

1. β(b) ◦ β(a) = {1} and β(b) ◦ β(b) = β(a);
2. if a′, a′′ ∈ β(a) and a′ ◦ a′′ = A then

(a) A ◦ x = x ◦ A = β(a) for all x ∈ β(b);
(b) if there exist b′, b′′ ∈ β(b) such that b′ ◦ b′′ = {a′} or b′ ◦ b′′ = {a′′} then A = β(b).
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Proof. 1. The claim follows immediately from Theorem 1.
2. (a) β(a) = β(a′) = a′ ◦ 1 = a′ ◦ (a′′ ◦ x) = (a′ ◦ a′′) ◦ x = A ◦ x and β(a) =

β(a′′) = 1 ◦ a′′ = (x ◦ a′) ◦ a′′ = x ◦ (a′ ◦ a′′) = x ◦ A.

(b) If b′ ◦ b′′ = {a′}, then A = a′ ◦ a′′ = (b′ ◦ b′′) ◦ a′′ = b′ ◦ (b′′ ◦ a′′) = b′ ◦ 1 = β(b).
In the same way, if b′ ◦ b′′ = {a′′} then A = a′ ◦ a′′ = a′ ◦ (b′ ◦ b′′) =
(a′ ◦ b′) ◦ b′′ = 1 ◦ b′′ = β(b).

In the forthcoming sections, we will determine the hyperproduct tables of 1-hypergroups
of sizes 5 and 6, up to isomorphisms. Since β is an equivalence, the β-classes of a hyper-
group (H, ◦) determine a partition of H in disjoint subsets. By Theorem 1(1), if (H, ◦) is a
finite 1-hypergroup such that H = {1, 2, . . . , n} and ωH = {1} then the first row and the
first column of the hyperproduct table exhibits the sets of the partition. In order to find the
1-hypergroups of size n with |H/β| = r, we will consider all the non-increasing partitions
of the integer (n− 1) in exactly (r− 1) positive integers.

4. 1-Hypergroups of Size 5

In this section we determine the hyperproduct tables of 1-hypergroups of size 5, apart
of isomorphisms. Hence, we put H = {1, 2, 3, 4, 5} and proceed with the analysis by
considering the following cases, corresponding to the non-increasing partitions of 4:

1. |H/β| = 2, β(2) = {2, 3, 4, 5};
2. |H/β| = 3, β(2) = {2, 3, 4}, β(5) = {5};
3. |H/β| = 3, β(2) = {2, 3}, β(4) = {4, 5};
4. |H/β| = 4, β(2) = {2, 3}, β(4) = {4}, β(5) = {5};
5. |H/β| = 5 and β(x) = {x} for all x ∈ H.

Case 1. In the first case H/β ∼= Z2, so we only have the following complete hypergroup:

◦1 1 2 3 4 5

1 1 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5
2 2, 3, 4, 5 1 1 1 1
3 2, 3, 4, 5 1 1 1 1
4 2, 3, 4, 5 1 1 1 1
5 2, 3, 4, 5 1 1 1 1

Case 2. By Proposition 4(2), (H, ◦) is a complete hypergroup and so its hyperproduct table
is the following, apart of isomorphisms:

◦2 1 2 3 4 5

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5
2 2, 3, 4 5 5 5 1
3 2, 3, 4 5 5 5 1
4 2, 3, 4 5 5 5 1
5 5 1 1 1 2, 3, 4
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Case 3. Here H/β ∼= Z3 and, setting β(2) = {2, 3} and β(4) = {4, 5}, we derive the
following partial hyperproduct table:

◦ 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 1 1
3 2, 3 1 1
4 4, 5 1 1
5 4, 5 1 1

By Proposition 5,

• if a, b, a′, b′ are elements in β(2) then

|a ◦ b| = |a′ ◦ b′| = 1 =⇒ 4 ◦ 4 = 4 ◦ 5 = 5 ◦ 4 = 5 ◦ 5 = {2, 3};

• if a, b, a′, b′ are elements in β(4) then

|a ◦ b| = |a′ ◦ b′| = 1 =⇒ 2 ◦ 2 = 2 ◦ 3 = 3 ◦ 2 = 3 ◦ 3 = {4, 5}.

Therefore, if we denote

P :
◦ 2 3

2
3

Q :
◦ 4 5

4
5

then we can restrict ourselves to the following three sub-cases:

• The tables P and Q do not contain any singleton entry. Here, one complete hyper-
group arises,

◦3 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4, 5 1 1
3 2, 3 4, 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

• The table P contains (one or more) singleton entries in the main diagonal only. Without
loss of generality, we can set 2 ◦ 2 = {4} and obtain

P :
◦ 2 3

2 4 4, 5
3 4, 5 R

Q :
◦ 4 5

4 2, 3 2, 3
5 2, 3 S

where R ∈ {{4}, {5}, {4, 5}} and S ∈ {{3}, {2, 3}}, that is to say there are 6 tables
to examine. Rejecting the hyperproduct tables that are not reproducible and the
isomorphic copies, we are left with the following 4 hypergroups:

◦4 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4 4, 5 1 1
3 2, 3 4, 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 3

◦5 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4 4, 5 1 1
3 2, 3 4, 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3
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◦6 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4 4, 5 1 1
3 2, 3 4, 5 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦7 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4 4, 5 1 1
3 2, 3 4, 5 4 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

• The table P contains at least one singleton entry off the main diagonal, for instance
2 ◦ 3 = {4}. Consequently, from Proposition 5 we have

P :
◦ 2 3

2 4
3

Q :
◦ 4 5

4 2, 3 2, 3
5 2, 3 2, 3

where every empty cell can be filled with {4} or {5} or {4, 5}, giving rise to 27 more
tables. After checking reproducibility and isomorphisms, we find the following
8 hypergroups:

◦8 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4 1 1
3 2, 3 4, 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦9 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 5 4 1 1
3 2, 3 4, 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦10 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4 1 1
3 2, 3 4, 5 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦11 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4 1 1
3 2, 3 5 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦12 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4 1 1
3 2, 3 4 4, 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦13 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 4, 5 4 1 1
3 2, 3 4 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦14 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 5 4 1 1
3 2, 3 4, 5 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

◦15 1 2 3 4 5

1 1 2, 3 2, 3 4, 5 4, 5
2 2, 3 5 4 1 1
3 2, 3 4 5 1 1
4 4, 5 1 1 2, 3 2, 3
5 4, 5 1 1 2, 3 2, 3

Case 4. Here, being |H/β| = 4, three more 1-hypergroups are obtained by considering that
the quotient group H/β is isomorphic to either the group Z4 or the group Z2 ×Z2.
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• If H/β ∼= Z4 and the β-class β(2) is associated with a generator of Z4 then we have

◦16 1 2 3 4 5

1 1 2, 3, 2, 3 4 5
2 2, 3 4 4 5 1
3 2, 3 4 4 5 1
4 4 5 5 1 2, 3
5 5 1 1 2, 3 4

• If H/β ∼= Z4 and the β-class β(2) is not associated with a generator of Z4 then we have

◦17 1 2 3 4 5

1 1 2, 3 2, 3 4 5
2 2, 3 1 1 5 4
3 2, 3 1 1 5 4
4 4 5 5 2, 3 1
5 5 4 4 1 2, 3

• If H/β ∼= Z2 ×Z2 then we have

◦18 1 2 3 4 5

1 1 2, 3 2, 3 4 5
2 2, 3 1 1 5 4
3 2, 3 1 1 5 4
4 4 5 5 1 2, 3
5 5 4 4 2, 3 1

Case 5. Lastly, in this case we have trivially H ∼= Z5 as |H/β| = 5.

Therefore we have obtained the following result.

Theorem 3. Apart of isomorphisms, there are 19 1-hypergroups of size 5. Of these hypergroups,
exactly 7 are complete.

Remark 3. With the only exception of the hypergroup (H, ◦4) in case 3, the 1-hypergroups of
size 5 can be determined by the construction defined in Section 3.1. In fact, the hypergroups
(H, ◦k) with k ∈ {1, 2, 3} are also complete. The hypergroups (H, ◦k) with k ∈ {5, 6, · · · , 15}
are obtained by considering G ∼= Z3, A1 = {1}, A2 = {2, 3}, A3 = {4, 5} and the functions
ϕk : A2 × A2 7→ P∗(A3) defined as ϕk(a, b) = a ◦k b for a, b ∈ A2 and k ∈ {5, 6, · · · , 15}.

5. 1-Hypergroups of Size 6

In this section we classify the product tables of 1-hypergroups of size 6, apart of
isomorphisms. Hence, we assume H = {1, 2, 3, 4, 5, 6}, ωH = {1} and distinguish the
following nine cases:

1. |H/β| = 2, β(2) = {2, 3, 4, 5, 6};
2. |H/β| = 3, β(2) = {2, 3, 4, 5}, β(6) = {6};
3. |H/β| = 3, β(2) = {2, 3, 4}, β(5) = {5, 6};
4. |H/β| = 4, H/β ∼= Z4, β(2) = {2, 3, 4}, β(5) = {5}, β(6) = {6};
5. |H/β| = 4, H/β ∼= Z4, β(2) = {2, 3}, β(4) = {4, 5}, β(6) = {6};
6. |H/β| = 4, H/β ∼= Z2 ×Z2, β(2) = {2, 3, 4}, β(5) = {5}, β(6) = {6};
7. |H/β| = 4, H/β ∼= Z2 ×Z2, β(2) = {2, 3}, β(4) = {4, 5}, β(6) = {6};
8. |H/β| = 5, β(2) = {2, 3}, β(4) = {4}, β(5) = {5}, β(6) = {6};
9. |H/β| = 6.
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In all aforesaid cases, except case 3, we can give the hyperproduct tables of the
1-hypergroups, apart of isomorphisms. To achieve this goal, we use the partition of H
into β-classes, the involved quotient group and the reproducibility condition that the
hyperproduct tables must satisfy. In case 3, we obtain a too high number of tables and
it is impossible to list them. Nevertheless, with the help of a computer algebra system,
we are able to perform an exhaustive search of all possible hyperproduct tables and to
determine their number, apart from isomorphisms. To improve readability, we postpone
the discussion of case 3 at the end of this chapter.

Case 1. The quotient group H/β is isomorphic to Z2.

◦ 1 2 3 4 5 6

1 1 2, 3, 4, 5, 6 2, 3, 4, 5, 6 2, 3, 4, 5, 6 2, 3, 4, 5, 6 2, 3, 4, 5, 6
2 2, 3, 4, 5, 6 1 1 1 1 1
3 2, 3, 4, 5, 6 1 1 1 1 1
4 2, 3, 4, 5, 6 1 1 1 1 1
5 2, 3, 4, 5, 6 1 1 1 1 1
6 2, 3, 4, 5, 6 1 1 1 1 1

Case 2. The quotient group H/β is isomorphic to Z3.

◦ 1 2 3 4 5 6

1 1 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5 6
2 2, 3, 4, 5 6 6 6 6 1
3 2, 3, 4, 5 6 6 6 6 1
4 2, 3, 4, 5 6 6 6 6 1
5 2, 3, 4, 5 6 6 6 6 1
6 6 1 1 1 1 2, 3, 4, 5

Case 4. By Corollary 1, we obtain two complete non-isomorphic hypergroups. In particular,
where the only β-class of size larger than 1 is associated to a generator of Z4, we have the
following hyperproduct table:

◦ 1 2 3 4 5 6

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5 6
2 2, 3, 4 5 5 5 6 1
3 2, 3, 4 5 5 5 6 1
4 2, 3, 4 5 5 5 6 1
5 5 6 6 6 1 2, 3, 4
6 6 1 1 1 2, 3, 4 5

Instead, if the only β-class of size larger than 1 is associated to a non-generator of Z4,
we obtain the following table:

◦ 1 2 3 4 5 6

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5 6
2 2, 3, 4 1 1 1 6 5
3 2, 3, 4 1 1 1 6 5
4 2, 3, 4 1 1 1 6 5
5 5 6 6 6 2, 3, 4 1
6 6 5 5 5 1 2, 3, 4



Mathematics 2021, 9, 108 12 of 17

Case 5. Considering that the group Z4 has only one element x of order 2 and that β(6) is
the only β-class of size 1, we have to examine two sub-cases, depending on whether the
class β(6) is associated to the element x or not.

1. |H/β| = 4, H/β ∼= Z4, β(2) = {2, 3}, β(4) = {4, 5}, β(6) = {6} and β(6) associated
to the only element of Z4 having order two;

2. |H/β| = 4, H/β ∼= Z4, β(2) = {2, 3}, β(4) = {4, 5}, β(6) = {6} and β(6) associated
to a generator of Z4.

In the first case we obtain a complete hypergroup,

◦ 1 2 3 4 5 6

1 1 2, 3 2, 3 4, 5 4, 5 6
2 2, 3 6 6 1 1 4, 5
3 2, 3 6 6 1 1 4, 5
4 4, 5 1 1 6 6 2, 3
5 4, 5 1 1 6 6 2, 3
6 6 4, 5 4, 5 2, 3 2, 3 1

In the second case, by using the multiplicative table of Z4 and the reproducibility of
H, we obtain the following partial table:

◦ 1 2 3 4 5 6

1 1 2, 3 2, 3 4, 5 4, 5 6
2 2, 3 X Y 6 6 1
3 2, 3 Z T 6 6 1
4 4, 5 6 6 1 1 2, 3
5 4, 5 6 6 1 1 2, 3
6 6 1 1 2, 3 2, 3 4, 5

with X ∪ Y = Z ∪ T = X ∪ Z = Y ∪ T = {4, 5}. If we suppose that X ∈ {{4}, {4, 5}}, up
to isomorphisms, we obtain 12 hyperproduct tables corresponding to the following values
of the sets X, Y, Z, T:

(?1) X = {4}, Y = {5}, Z = {5}, T = {4};
(?2) X = {4}, Y = {5}, Z = {5}, T = {4, 5};
(?3) X = {4}, Y = {5}, Z = {4, 5}, T = {4};
(?4) X = {4}, Y = {5}, Z = {4, 5}, T = {4, 5};
(?5) X = {4}, Y = {4, 5}, Z = {5}, T = {4, 5};
(?6) X = {4}, Y = {4, 5}, Z = {4, 5}, T = {4};
(?7) X = {4}, Y = {4, 5}, Z = {4, 5}, T = {5};
(?8) X = {4}, Y = {4, 5}, Z = {4, 5}, T = {4, 5};
(?9) X = {4, 5}, Y = {4}, Z = {4}, T = {4, 5};
(?10) X = {4, 5}, Y = {4}, Z = {5}, T = {4, 5};
(?11) X = {4, 5}, Y = {4}, Z = {4, 5}, T = {4, 5};
(?12) X = {4, 5}, Y = {4, 5}, Z = {4, 5}, T = {4, 5}.

Remark 4. The previous 12 hypergroups can be derived from the construction shown in Section 3.1,
where we let G ∼= Z4, A1 = {1}, A2 = {2, 3}, A3 = {4, 5}, A4 = {6}, and ϕ : A2 ×
A2 7→ P∗(A3) is the function defined as ϕ(a, b) = a ?k b for a, b ∈ A2 and k ∈ {1, 2, . . . , 12}.
Incidentally, we note that the hypergroup arising from ?12 is also complete.
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Case 6. In this case we obtain only one 1-hypergroup, which is also complete:

◦ 1 2 3 4 5 6

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5 6
2 2, 3, 4 1 1 1 6 5
3 2, 3, 4 1 1 1 6 5
4 2, 3, 4 1 1 1 6 5
5 5 6 6 6 1 2, 3, 4
6 6 5 5 5 2, 3, 4 1

Case 7. In this case, we also obtain only one 1-hypergroup, which is also complete:

◦ 1 2 3 4 5 6

1 1 2, 3 2, 3 4, 5 4, 5 6
2 2, 3 1 1 6 6 4, 5
3 2, 3 1 1 6 6 4, 5
4 4, 5 6 6 1 1 2, 3
5 4, 5 6 6 1 1 2, 3
6 6 4, 5 4, 5 2, 3 2, 3 1

Case 8. Here the quotient group is isomorphic to Z5 and we deduce one complete hypergroup:

◦ 1 2 3 4 5 6

1 1 2, 3 2, 3 4 5 6
2 2, 3 4 4 5 6 1
3 2, 3 4 4 5 6 1
4 4 5 5 6 1 2, 3
5 5 6 6 1 2, 3 4
6 6 1 1 2, 3 4 5

Case 9. Here β(x) = {x}, ∀x ∈ {2, 3, 4, 5, 6}, and so H is a group of order 6, that is H ∼= Z6
or H ∼= S3.

To conclude the review of 1-hypergroups of size 6, hereafter we consider the most
challenging case, where a very high number of tables arises.

Case 3. Here the quotient group H/β is isomorphic toZ3, β(2) = {2, 3, 4} and β(5) = {5, 6}.
In this case there is only one complete 1-hypergroup; its multiplicative table is the following:

◦ 1 2 3 4 5 6

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5, 6 5, 6
2 2, 3, 4 5, 6 5, 6 5, 6 1 1
3 2, 3, 4 5, 6 5, 6 5, 6 1 1
4 2, 3, 4 5, 6 5, 6 5, 6 1 1
5 5, 6 1 1 1 2, 3, 4 2, 3, 4
6 5, 6 1 1 1 2, 3, 4 2, 3, 4

In order to find the other 1-hypergroups, we make sure that the sub-cases we are
dealing with are disjoint from each other, which means that a hypergroup of a sub-case can
not be isomorphic to a hypergroup of another sub-case.
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If (H, ◦) is not a complete hypergroup then we can start from the partial table

◦ 1 2 3 4 5 6

1 1 2, 3, 4 2, 3, 4 2, 3, 4 5, 6 5, 6
2 2, 3, 4 1 1
3 2, 3, 4 1 1
4 2, 3, 4 1 1
5 5, 6 1 1 1
6 5, 6 1 1 1

and the partial sub-tables

P :

◦ 2 3 4

2
3
4

Q :
◦ 5 6

5
6

Taking into account Proposition 5, there are three options:

1. In the partial table Q there is at least one hyperproduct which is a singleton, for
instance {2}, and for all a, a′ ∈ {2, 3, 4} we have a ◦ a′ = {5, 6}. We consider two
sub-cases:

(1a) the singleton can appear only in the main diagonal:

Q :
◦ 5 6

5 2 R
6 S T

By reproducibility, we have R, S ∈ {{3, 4}, {2, 3, 4}} and T ∈ P∗({2, 3, 4}).
This yields 22 · 7 = 28 tables to examine.

(1b) The singleton must appear off the main diagonal,

Q :
◦ 5 6

5 R 2
6 T S

with R, S ∈ {{3, 4}, {2, 3, 4}} and T ∈ P∗({2, 3, 4}). Thus other 22 · 7 = 28
tables arise.

2. The partial table Q contains at least one hyperproduct of size two, for instance {2, 3},
but there are no singletons inside Q. Moreover, for all a, a′ ∈ {2, 3, 4}, we have
a ◦ a′ = {5, 6}. We obtain two subcases, again:

(2a) the hyperproduct {2, 3} can appear only in the main diagonal,

Q :
◦ 5 6

5 2, 3 2, 3, 4
6 2, 3, 4

and 6 ◦ 6 ∈ {{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}. Hence, 4 cases tables arise.
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(2b) the hyperproduct {2, 3}must appear out of the main diagonal,

Q :
◦ 5 6

5 R 2, 3
6 S T

the hyperproducts R and T belong to the set {{2, 4}, {3, 4}, {2, 3, 4}} and
S ∈ {{2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}. Therefore 32 · 4 = 36 cases arise.

3. The partial table P contains at least one singleton. Without loss in generality, we can
suppose that {5} is among them. From Proposition 5 we deduce 5 ◦ 5 = 5 ◦ 6 =
6 ◦ 5 = {2, 3, 4}. The following two possibilities arise:

(3a) Singletons can appear only in the main diagonal of P. Therefore we put
2 ◦ 2 = {5} and obtain

P :

◦ 2 3 4

2 5 5, 6 5, 6
3 5, 6 R 5, 6
4 5, 6 5, 6 S

Q :
◦ 5 6

5 2, 3, 4 2, 3, 4
6 2, 3, 4 T

where R, S ∈ {{5}, {6}, {5, 6}}. Moreover, from Proposition 5, we deduce that
T 6= {2}, that is T ∈ P∗({2, 3, 4})− {{2}}, and 32 · 6 = 54 cases arise.

(3b) There is a singleton cell off the main diagonal of P, for instance, 2 ◦ 3 = {5}.
We obtain

P :

◦ 2 3 4

2 5
3
4

Q :
◦ 5 6

5 2, 3, 4 2, 3, 4
6 2, 3, 4 R

We consider two sub-cases:

i. R = {2, 3, 4}: the 8 empty cells in table P can be filled with either {5},
or {6}, or {5, 6}. Hence, 38 cases arise.

ii. |R| < 3: from Proposition 5, R 6= {2}, R 6= {3}, and so R ∈ {{4}, {2, 3},
{2, 4}, {3, 4}}. Moreover the table P can not contain the hyperproduct
{6}, that is every cell in P has to be filled with {5} or {5, 6}. Thus,
28 · 4 = 512 cases arise.

All the previous sub-cases have been examined with the help of a computer algebra
system based on MATLAB R2018a running on an iMac 2009 with an Intel Core 2 processor
(3.06 GHz, 4 GB RAM). The complete enumeration of all 1-hypergroups in case 3 took
about 2 min utilizing the subdivision into sub-cases described above, while without that
subdivision the running time for solving case 3 exceeded 90 min. We report in Table 1 the
number of 1-hypergroups found in each sub-case considered above, up to isomorphisms.

Table 1. Number of non-isomorphic, non-complete 1-hypergroups found in case 3, |H| = 6.

Case (1a) (1b) (2a) (2b) (3a) (3b) Total

Hypergroups 13 13 3 12 12 1180 1233

Remark 5. The 1-hypergroups in sub-cases (1a), (1b), (2a) and (2b) can be derived from the
construction shown in Section 3.1, where G ∼= Z3, A1 = {1}, A2 = {5, 6}, A3 = {2, 3, 4} and
ϕ : A2 × A2 7→ P∗(A3) is the function defined by the corresponding partial tables Q.
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In Table 2 we summarize the results obtained in our case-by-case review of 1-hypergroups
of order 6. In that table, we report the number of 1-hypergroups found in each case and the
number of complete hypergroups among them. Theorem 4 states the conclusion.

Table 2. Number of non-isomorphic 1-hypergroups, |H| = 6.

Case 1 2 3 4 5 6 7 8 9 Total

Hypergroups 1 1 1234 2 13 1 1 1 2 1256
Complete 1 1 1 2 2 1 1 1 2 11

Theorem 4. Up to isomorphisms, there are 1256 1-hypergroups of size 6, of which 11 are complete.

6. Conclusions and Directions for Further Research

A 1-hypergroup is a hypergroup (H, ◦) where the kernel of the canonical projection
ϕ : H 7→ H/β is a singleton. In this paper, we enumerate the 1-hypergroups of size 5 and
6. The main results are given in Theorem 3 for |H| = 5 and Theorem 4 for |H| = 6. In
particular, in Section 4 we show a representation of the 19 1-hypergroups of size 5. To
achieve this goal, we exploit the partition of H induced by β. In this way, we reduce the
analysis of a tough problem to that of a few sub-problems that can be solved explicitly or
by means of scientific computing software on an ordinary desktop computer. Moreover,
in Section 3.1 we give a construction of hypergroups which, under certain conditions, are
1-hypergroups. That construction is very flexible and many 1-hypergroups of size 5 and 6
can be determined in that way.

To highlight a direction for possible further research, we point out that many hyper-
groups found in the present work are also join spaces or transposition hypergroups. To be
precise, let (H, ◦) be a hypergroup and, for every a, b ∈ H, let a/b and b\a denote the sets
{x ∈ H | a ∈ x ◦ b} and {x ∈ H | a ∈ b ◦ x}, respectively. The commutative hypergroups
fulfilling the transposition axiom, that is

a/b ∩ c/d 6= ∅ =⇒ a ◦ d ∩ b ◦ c 6= ∅

for all a, b, c, d ∈ H are called join spaces. These hypergroups have been widely used
in Geometry [31,32]. In [33] Jantosciak generalized the transposition axiom to arbitrary
hypergroups as follows:

b\a ∩ c/d 6= ∅ =⇒ a ◦ d ∩ b ◦ c 6= ∅,

for all a, b, c, d ∈ H. These particular hypergroups are called transposition hypergroups.
A number of results on transposition hypergroups can be found in, e.g., [33–35]. For
example, it is known that the complete hypergroups are also transposition hypergroups.
The construction shown in Section 3.1 produces transposition hypergroups when a ? d∩ b ?
c 6= ∅, for all a, b ∈ Ai and c, d ∈ Aj. Indeed, if x ∈ b\a ∩ c/d then a ∈ b ◦ x and c ∈ x ◦ d.
Thus, we have a ◦ d ∪ b ◦ c ⊆ b ◦ x ◦ d. By point 3. of Proposition 1, there exists k ∈ G
such that b ◦ x ◦ d = Ak. By definition of ◦, if k 6= ij then a ◦ d = b ◦ c = Ak. Otherwise, if
k = ij then we have a, b ∈ Ai, c, d ∈ Aj, a ◦ d = a ? d and b ◦ c = b ? c. Hence, by hypotesis,
a ◦ d ∩ b ◦ c 6= ∅.

Based on the preceding comment, we plan to characterize and enumerate the
1-hypergroups of small size that also are join spaces or transposition hypergroups in
further works.
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