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Generalized modularity matrices
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Abstract

Various modularity matrices appeared in the recent literature on network analysis and alge-
braic graph theory. Their purpose is to allow writing as quadratic forms certain combinatorial
functions appearing in the framework of graph clustering problems. In this paper we put in
evidence certain common traits of various modularity matrices and shed light on their spec-
tral properties that are at the basis of various theoretical results and practical spectral-type
algorithms for community detection.

Keywords: Community detection, modularity matrix, nodal domains.
2000 MSC: 05C50, 15A18, 15B99

1. Introduction

Consider the following problem: We have a group of individuals, objects, or documents,
bound together by a kind of reciprocal similarity relationship, and we want to localize a cluster,
a tightly knit subset of such group that can be recognized as a “community”, in some sense.
In the common terminology of network science, this is an example of a community detection
problem [12, 24]. In fact, community detection problems are among the most relevant problems
in the analysis of complex networks.

Networks are widely used to model a large variety of real life systems and appear in many
fields of scientific interests. Community detection and graph clustering methods may reveal
many significant network properties and, as a consequence, are receiving a considerable amount
of attention from various research areas, see e.g., [3, 8, 14]. One of the most popular method
for community detection is that of modularity. The idea was proposed by Newman and Girvan
in [19] and is essentially based on the maximization of a function called indeed modularity.
However there is no clear or universally accepted definition of community in a graph; despite of
this, almost any recent definition or community detection method is based on the maximization
of a quadratic quality function related with the original modularity, see for instance, [1, 22, 23].

In this paper we basically propose a unified framework for a number of modularity-type
matrices and functions borrowed from recent literature on community detection, and we analyse
their spectral properties that are of possible interest for community detection methods. In
particular, we prove a modularity-oriented version of a well known theorem due to Fiedler [11,
Thm. 3.3] that holds for the Laplacian matrix of a graph. Our theorem holds for any negative
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semidefinite rank-one perturbation of a symmetric matrix A with nonnegative off diagonal
entries, and can be used to ensure the connectivity of the modules generated by the best known
algorithms for community detection inspired by the renowned spectral partitioning method.

This paper is organized as follows. After introducing hereafter our main notation, in Section
2 we present briefly a number of topics arising in graph clustering literature, which provide
several relevant examples where our concept of generalized modularity matrix comes from. In
the subsequent Section 3 we prove our main result, which shows that a certain nodal domain of a
leading eigenvector of a generalized modularity matrix is connected. In the successive sections
we deepen the study of spectral properties of generalized modularity matrices. In fact, we
consider the identifiability of a prescribed cluster as a nodal domain of the leading eigenvector
(Section 4), the increase of the largest eigenvalue due to a newly added edge (Section 5), and
the relationship between positive eigenvalues of a modularity matrix and the number of distinct
clusters that can be recognized in a given network (Section 6). Finally, Section 7 is used to
point out some conclusive remarks.

1.1. Notations and preliminaries

A symmetric weighted graph G is a pair (V,E) where V is a finite set of nodes (or vertices),
and E : V × V 7→ R≥0 is a nonnegative weight function defined over edges, that is, node pairs,
where E(i, j) = E(j, i). In practice, edges with larger weights represent stronger connections
among nodes, so missing edges get weight 0. If E(i, i) > 0 then we have a loop on node i. Any
graph considered in the following is assumed symmetric, weighted, and connected. Since V is
finite we freely identify it with {1, . . . , n}.

There exists a natural bijection that associates to any graphG a componentwise nonnegative,
irreducible, symmetric matrix A ≡ (aij), called adjacency matrix, defined by aij = E(i, j).
Further relevant notation is listed below.

• For any i ∈ V , di denotes its degree, di =
∑

j∈V aij . The vector of degrees of G is denoted

by d = (d1, . . . , dn)
T.

• For any S ⊆ V we denote by S the complement V \ S and let vol S =
∑

i∈S di be the
volume of S. In particular, vol G =

∑

i∈V di is the volume of the whole graph.

• For any S ⊆ V , if X is an n× n matrix then we denote by X(S) the principal submatrix
of X whose indices are in S. Analogously, we denote by G(S) the subgraph of G induced
by nodes in V , that is the graph whose adjacency matrix is A(S).

• Let 1 denote the vector of all ones whose dimension depends on the context. Furthermore,
for any S ⊆ {1, . . . , n} we let 1S be its characteristic vector, defined as (1S)i = 1 if i ∈ S
and (1S)i = 0 otherwise.

• The cardinality of a set S is denoted by |S|. In particular, |V | = n.

• For a matrix A and a vector x, we write A ≥ O or x ≥ 0 (resp. A > O or x > 0) to
denote componentwise nonnegativity (resp., positivity).

• If X is a symmetric matrix then its eigenvalues are denoted by λi(X) and are ordered as
λ1(X) ≥ · · · ≥ λn(X), unless otherwise specified.

We will freely use familiar properties of matrices such as the variational characterization
of eigenvalues of symmetric matrices, Gershgorin’s eigenvalue localization theorem, and funda-
mental results in Perron–Frobenius theory, see e.g., [2, 27]. For completeness, we recall hereafter
some important facts concerning the symmetric eigenvalue problem:
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• (Cauchy interlacing theorem) Let A ∈ Rn×n be a symmetric matrix and let Z ∈ Rn×(n−k)

be a matrix with orthonormal columns. Then, for all i = 1, . . . , n− k,

λi(A) ≥ λi(Z
TAZ) ≥ λi+k(A). (1)

• Let A ∈ Rn×n be a symmetric matrix and let B ∈ R(n−k)×(n−k) be a principal submatrix
of A. Then, for all i = 1, . . . , n− k,

λi(A) ≥ λi(B) ≥ λi+k(A). (2)

• (Weyl’s inequalities) Let A be a real symmetric matrix of order n and v ∈ Rn. Then, for
i = 1, . . . , n− 1,

λi(A) ≥ λi+1(A+ vvT) ≥ λi+1(A). (3)

2. Motivations and overview

The discover and description of communities in a graph is a central problem in modern graph
analysis; an elementary overview of graph clustering problems and techniques is the survey [24].
Although intuition suggests that a community (or cluster) in G should be a possibly connected
group of nodes whose internal connections are stronger than those with the rest of the network,
there is no universally accepted definition of community. A survey of several proposed definitions
of community can be found in [12]. However, as the author of that paper therein underlines,
the definition based on the modularity quality function is by far the most popular one. The
modularity function was proposed by Newman and Girvan in [19] as a possible measure of
whether a subgraph of G is a cluster or not. They assert that a subset S ⊆ V is a cluster if
the induced subgraph G(S) contains more edges than those expected if edges were placed at
random preserving node degrees. All such subsets are indeed those having positive modularity.
Since no information on the connectedness nor the dimension of the clusters is given by subsets
with positive modularity, we shall call such subgraphs not just communities but rather modules.
Let us formalize such concept. Consider a graph G and the associated adjacency matrix A.
The graph G may have loops, and edges may be weighted, so that A is a rather arbitrary
nonnegative matrix. If d = A1 is the degree vector and vol G =

∑

i di is the volume of the
graph, the Newman–Girvan modularity matrix of G is defined as [17, 18, 19]

MNG = A− 1

vol G
ddT (4)

and the modularity measure of a subset S ⊆ V is usually given by the associated quadratic
form

QNG(S) = 1
T

SMNG1S

where 1S denotes the characteristic vector of the set S ⊆ V . Thus modules are subgraphs G(S)
such that QNG(S) > 0. A module which is connected and has a considerable size is commonly
considered as a good community candidate. Remark the equivalent formulas

QNG(S) = 1
T

SA1S − (dT1S)
2

vol G
= ein(S)−

(vol S)2

vol G
,

where
ein(S) = 1

T

SA1S =
∑

i,j∈S

E(i, j) (5)
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is the overall strength of internal links.
Besides the Newman–Girvan matrix, several generalized modularity matrices appear in the

community detection literature, often in a rather hidden form. Indeed, in [9] we initially focused
our investigations on MNG, but we realized afterward that a clear common structure is shared
by a number of different modularity measures and matrices appearing in this scientific area.
Thus we propose here a spectral analysis which uncovers common properties shared by all of
them. A generalized modularity matrix is any negative semidefinite rank-one correction of a
real symmetric matrix with nonnegative off-diagonal entries. We shall denote any such a matrix
with the symbol M and we shall state a formal definition in the subsequent Section 3.

In the remaining part of this section we shortly discuss various topics arising in the com-
munity detection literature, presenting other modularity-type matrices and motivating the in-
troduction of generalized modularity matrices in turn.

2.1. Newman’s spectral method

A major task in community detection is to look for a module in G having maximal modu-
larity, briefly called a leading module in what follows. The probably best known methods for
detecting a leading module are based on the idea of spectral techniques, firstly introduced in
graph partitioning problems.

Consider the set {0, 1}n of n-dimensional vectors whose components are only 0 or 1. Clearly
Q∗ = maxS⊆V QNG(S) = maxv∈{0,1}n vTMNGv. Now let u1, . . . , un be the (real) orthonormal

eigenvectors of MNG, then MNG =
∑

i λi(MNG)uiu
T

i and vTMNGv =
∑

i λi(MNG)(u
T

i v)
2. If

v could be chosen to be proportional to u1 then the sum would be maximized. However the
constraint v ∈ {0, 1}n prevents us to such a simple choice and makes the optimization problem
much more difficult. In fact it has been pointed out in several works, as for instance [17, 18],
that it is extremely unlikely that a simple procedure exists for finding the optimal v ∈ {0, 1}n.
Spectral partitioning based methods essentially select v accordingly with the sign of the elements
in u1, by setting vi = 1 if (u1)i is positive (or nonnegative), and vi = 0 otherwise. Then the
vertex set V is partitioned into P = {i ∈ V | vi = 1} and N = P , and G(P ) is proposed as an
approximation of the module having maximal modularity in G.

Although the described procedure proposes the subgraph G(P ) as a leading module, it
can been shown that either G(P ) or G(N) are connected subgraphs of G, depending on the
orientation of u1 [9, Thm. 4.2]. However (and unfortunately) if the sign of u1 is chosen so that
G(P ) is connected, it is not possible to ensure that G(N) is connected as well, at least in the
general case. Counterexamples are given in [9] and in the subsequent Remark 3.6.

The described procedure provides a reasonably good bipartition of G. Typical networks,
however, require a division into more than two parts, so a natural extension of the spectral
method described so far has been proposed. Such idea was probably introduced by Newman
in [18] and is at the basis of most of the modern algorithms for communities detection, see e.g.
the renowned Louvain method [3]. We call this procedure Successive Spectral Graph Bipartition
algorithm (SSGB) and we briefly sketch it hereafter.

The spectral method previously described is used to divide the network into two parts P
and N , so that V = P ∪ N . Then those parts are bipartitioned again into P1, N1, P2, and
N2 so that P = P1 ∪N1, N = P2 ∪N2, and so forth. The crucial step here is that each time
the modularity matrix for the subgraphs G(Pi) and G(Ni) must be considered, and of course
it can not be done by simply considering the principal submatrices MNG(Pi) and MNG(Ni)
respectively, since the degrees of vertices in the subgraphs change when some edge is removed.
Instead, for each subset S ⊆ V and respective subgraph G(S), a new modularity matrix MS

NG

4



is defined by setting
MS

NG = MNG(S)−
(

DG(S) − vol S
vol GD(S)

)

(6)

where D is the diagonal matrix of the degrees of original graph G, whereasDG(S) is the diagonal
matrix of the degrees of the considered subgraph G(S). The SSGB procedure stops when the
computed modularity matrix MS

NG has no positive eigenvalues. It is worth noting that already
this very crucial procedure generates matrices whose structure is quite different with respect the
structure ofMNG, due to the diagonal term. Thus the connectedness of subgraphs it produces is
not ensured anymore. However, all the matrices therein considered are generalized modularity
matrices, as we will better discuss throughout the end of Section 3.

2.2. A normalized variant of MNG

Let D = Diag(d1, . . . , dn) be the diagonal matrix of the degrees of the graph G. In analogy
with the renowned normalized Laplacian matrix of a graph [5], the normalized version of the
Newman–Girvan modularity matrix is defined by

Mnorm = D−1/2MNGD
−1/2 .

Even though that matrix is not very popular in the community detection literature, Mnorm

appears in various networks related questions as the analysis of quasi-randomness properties of
graphs with given degree sequences, see e.g., [4] or [5, Chap. 5]. It is straightforward to see that
the modularity measure induced by MNG can also be defined as a quadratic form associated
with Mnorm. In fact, if v = D1/2

1S then

QNG(S) = 1
T

SMNG1S = vTMnormv .

The effect of the diagonal scaling becomes apparent when considering Rayleigh quotients instead
of quadratic forms. Indeed, 1

T

SMNG1S/1
T

S1S = QNG(S)/|S|, whereas

vTMnormv

vTv
=

1
T

SMNG1S

1
T

SD1S
=

QNG(S)

vol S
.

Note that Anorm = D−1/2AD−1/2 is a nonnegative irreducible matrix to which corresponds the
symmetric weighted graph Gnorm = (V, Ê) whose weight function is Ê(i, j) = E(i, j)/

√

didj .
Therefore Mnorm and MNG share the crucial property of being a negative semidefinite rank-one
correction of the adjacency matrix of a graph.

2.3. The matrix approach to the resolution limit

Although modularity optimization techniques are very popular, recently it has been pointed
out that they suffer a resolution limit, see e.g., [13, 15, 16]. In fact, it has been noted that
modularity maximization algorithms are inclined to merge small clusters into larger modules.
Various alternative modularity measures have been proposed in recent years, essentially based
on the introduction of a tunable scaling coefficient γ (usually called resolution parameter) or
on the insertion of weighted selfloops.

Starting from a statistical mechanics approach which interprets community detection as find-
ing the ground state of a spin system, Reichardt and Bornholdt introduced in [22] a parametrized
modularity measure for S ⊆ V . In our notations, that definition reads

Qγ(S) = ein(S)− (γ/vol G)(vol S)2,

5



where γ > 0 is the resolution parameter and ein(S) is as in (5). We observe that, introducing
the matrix

MRB = A− (γ/vol G)ddT, (7)

then Qγ(S) = 1
T

SMRB1S , and when γ = 1 then we recover Newman–Girvan modularity matrix
(4). Also from statistical mechanics considerations the parametrized modularity function

Qγ(S) = ein(S)− γ|S|2

has been considered by Ronhovde and Nussinov in [23] as well as other authors, see e.g., [21, 26],
possibly with minor notational variations or scaling factors. By defining the matrix

MRN = A− γ11
T

we can express the previous modularity function as Qγ(S) = 1
T

SMRN1S . Another approach has
been proposed in [1] by Arenas, Fernandes and Gomez. The following matrix is suggested as
an alternative to the original Newman–Girvan modularity:

MAFG = A+ γI − (d+ γ1)(d+ γ1)T

γn+ vol G
,

where γ ∈ R is the resolution parameter, n is the number of nodes of the graph and d is the
degree vector as usual. Note that the matrix A+ γI is the adjacency matrix of G where a self-
loop with weight γ is added to each node, so that MAFG is nothing but the Newman–Girvan
matrix of the graph updated by the added loops.

2.4. Generalized modularity matrices and measures

Motivated by the aforementioned definitions, we consider the following generalization of the
Newman–Girvan modularity matrix:

Definition 2.1. Let A be the the adjacency matrix of an undirected, connected graph, possibly
endowed by loops and weighted edges, let W be a real diagonal matrix, let v 6= 0 be a nonnegative
vector, and let σ be a positive scalar. The matrix M = A+W−σvvT is a generalized modularity
matrix.

According to Definition 2.1, it is clear that all previously defined modularity-type matrices
MNG, Mnorm, MRB, MAFG and MRN are indeed generalized modularity matrices.

Hereafter, we adopt the notation Q(S) to indicate the modularity measure of S ⊆ V corre-
sponding to (or induced by) a given generalized modularity matrix M , that is,

Q(S) = 1
T

SM1S .

Remark that, if G = (V,E) and W = Diag(w1 . . . , wn) then the resulting expression for the
modularity of S is

Q(S) = ein(S) +
∑

i∈S

wi − σ

(

∑

i∈S

vi

)2

,

where ein(S) is as in (5). Thus, the diagonal matrix W establishes a weight on each node; and
the value of Q(S) includes the sum of all node weights in S.

Finally, as it will play a crucial role in forthcoming discussions, we borrow from [9] the
notation

mG = λ1(M)

6



to denote the leading (i.e., rightmost) eigenvalue of a generalized modularity matrix M associ-
ated to the graph G. Owing to the inequality

mG = max
x 6=0

xTMx

xTx
≥ 1

T

SM1S

1
T

S1S
=

Q(S)

|S| ,

the existence of a module in G implies that mG > 0. Moreover, mG is an upper bound for the
“relative modularity” Q(S)/|S|.

Furthermore, for any two disjoint subsets S, T ⊆ V we will consider their joint modularity
Q(S, T ) = 1

T

SM1T . Note that Q(S ∪ T ) = Q(S) +Q(T ) + 2Q(S, T ). In particular, Q(S ∪ T ) ≥
Q(S) +Q(T ) if and only if Q(S, T ) ≥ 0.

3. Nodal domains of leading eigenvectors

Given a nonzero vector v ∈ Rn the subgraph G(S) induced by the set S = {i : vi ≥ 0} is a
nodal domain of v [6, 7]. This fundamental definition admits obvious variations (for example,
inequality can be strict, or reversed) and, since the seminal papers by Fiedler [10, 11], it has
become the a major tool of spectral methods in community detection and graph partitioning
[17, 20, 24]. Indeed, nodal domains of eigenvectors of Laplacian or modularity matrices are
commonly utilized in order to localize subgraphs having sought properties.

In this section we consider nodal domains of the leading eigenvector of generalized modu-
larity matrices. In particular, the forthcoming Theorem 3.5 is a modularity matrix counterpart
of Fiedler’s theorem [11, Thm. 3.3] about Laplacian matrices.

Lemma 3.1. Let A ≥ O be irreducible and let W be any real diagonal matrix. Then λ1(A+W )
is simple and admits a positive eigenvector.

Proof. As W is a real diagonal matrix, there exists a nonnegative scalar α such that the shifted
matrix A+W +αI is nonnegative and irreducible. Then the Perron–Frobenius theorem implies
the thesis.

Lemma 3.2. Let M = A + W − σvvT be a generalized modularity matrix. Then mG <
λ1(A+W ).

Proof. Weyl’s inequalities (3) give mG ≤ λ1(A +W ). Suppose by contradiction mG = λ1(A+
W ). Let x and y be eigenvectors corresponding to mG and λ1(A + W ), that is, Mx = mGx
and (A+W )y = λ1(A+W )y. By Lemma 3.1 we can suppose y > 0. Hence,

mGx
Ty = xTMy = xT(A+W − σvvT)y = λ1(A+W )xTy − σ(xTv)(vTy).

Thus σ(xTv)(vTy) = 0. Since σ(vTy) > 0 we must have xTv = 0. Then, λ1(A+W )x = mGx =
Mx = (A+W −σvvT)x = (A+W )x. Consequently, x is an eigenvector of A+W corresponding
to its first eigenvalue. Lemma 3.1 implies either x > 0 or x < 0. In both cases xTv = 0 cannot
hold.

Interlacing properties between the spectra of A + W and M lead us immediately to the
inequalities

λ2(A+W ) ≤ mG ≤ λ1(A+W ).

The previous lemma shows that the rightmost inequality is always strict. The next statement
clarifies that, under common circumstances, also the leftmost inequality is strict and mG is a
simple eigenvalue of M .
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Theorem 3.3. If M = A+W −σvvT is a generalized modularity matrix and v is not a leading
eigenvector of A+W then mG is a simple eigenvalue.

Proof. For an arbitrary vector x we have xTMx = xT(A + W )x − σ(vTx)2. From Courant–
Fisher’s minimax theorem,

mG = max
x 6=0

xTMx

xTx
≥ max

vTx=0

xT(A+W )x

xTx

≥ min
z 6=0

max
zTx=0

xT(A+W )x

xTx
= λ2(A+W ).

Thus we may have mG = λ2(A +W ) only if the two preceding inequalities hold as equalities,
that is, vTx = 0 where x is an eigenvector of M associated to mG, and (A+W )v = λ1(A+W )v,
owing to orthogonality of eigenvectors of a symmetric matrix. However, if the latter equation
is verified, then v is also an eigenvector of M . Indeed,

λ1(A+W )v = (A+W )v = Mv + σ(vTv)v,

whence Mv = (λ1(A +W )− σvTv)v. Consequently, the equation vTx = 0 is redundant, again
owing to orthogonality of eigenvectors. Finally, if mG is not simple then M has at least two
eigenvalues strictly greater than λ2(A+W ), which contradicts Weyl’s inequalities (3), and the
proof is complete.

Lemma 3.4. Let M = A + W − σvvT be a generalized modularity matrix. Let Mx = mGx
and the eigenvector x oriented so that vTx ≥ 0. Then, S = {i : xi ≥ 0} induces a connected
subgraph.

Proof. By hypotheses, we have the componentwise inequality mGx = Mx = (A + W )x −
(σvTx)v ≤ (A+W )x.

By contradiction, assume that S induces 2 disjoint connected subgraphs, say G(S1) and
G(S2). Reorder and partition consistently A, W , M , and v in such a way that S1 = {1, . . . , n1},
and S2 = {n1 +1, . . . , n2}. Consider the first n2 equations in the inequality mGx ≤ (A+W )x:

(

mGx1

mGx2

)

≤
(

A11 +W11 A13

A22 +W22 A23

)





x1

x2

x3



 =

(

A11x1 +W11x1 +A13x3

A22x2 +W22x2 +A23x3

)

Note that x3 < 0 and Ai3 6= O by irreducibility, for i = 1, 2. In particular, we have strict
inequality in at least one entry both in S1 and in S2. Let y1 and y2 be left eigenvectors of
A11 +W11 and A22+W22, respectively such that: yTi (Aii +Wii) = λ1(Aii+Wii)y

T

i for i = 1, 2.
Then,

mGy
T

i xi ≤ yTi (Aii +Wii)xi + yTi Ai3x3 < yTi (Aii +Wii)xi = λ1(Aii +Wii)y
T

i xi,

for i = 1, 2. Obviously, yTi xi ≥ 0 since yi > 0 by Lemma 3.1 and xi ≥ 0 by hypothesis. Actually,
due to the strict inequality above, we must have yTi xi > 0. Thus both λ1(A11 + W11) > mG

and λ1(A22 +W22) > mG. By eigenvalue interlacing inequalities (2), we conclude that A+W
has at least 2 eigenvalues strictly larger than mG, which contradicts Weyl’s inequalities (3).

We can continue the argument in the previous proof as follows. Let y be any vector such
that (A + W )y ≥ mGy. For example, y can be a positive eigenvector of λ1(A + W ) since by
Lemma 3.2 we know that λ1(A+W ) > mG. Let x+ y = z. Thus mGz ≤ (A+W )z and, with
arguments analogous to the ones exploited before, we obtain the following result.
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Theorem 3.5. In the same hypotheses and notations of Lemma 3.4, let y be a positive eigen-
vector of A+W corresponding to λ1(A+W ). Then, for any ε ≥ 0, the set S = {i : xi+εyi ≥ 0}
induces a connected subgraph.

Remark 3.6. A connectedness result concerning the set S = {i : xi > 0} where x is an eigen-
vector as in the hypotheses of Lemma 3.4 can be obtained only under the additional assumption
that mG is simple. Indeed, consider the following example: Let G be a star graph on n = m+1
nodes, with every node endowed by a loop carrying the weight

√
m. Its adjacency matrix is

A =











√
m 1 · · · 1
1

√
m

...
. . .

1
√
m











.

Easy computations show that MNG has an (m − 1)-fold leading eigenvalue mG equal to
√
m;

every associated eigenvector is a zero-sum vector vanishing at the star center. Consequently, if
x is a leading eigenvector of MNG then S = {i : xi > 0} is connected if and only if it reduces to
a single node. We will not pursue here this argument, and point the interested reader to Section
4 of [9].

An applications to community detection

In this subsection we describe a major application of Theorem 3.5 to the community de-
tection problem through the following Corollary 3.7. First of all let us underline that as soon
as the modularity measure is induced by generalized modularity matrix M , it is reasonable to
consider the SSGB procedure (see Section 2) applied to M , in order to subdivide the graph into
modules. However the definition of the matrix in (6) is not always well posed. The matrix MS

NG

therein considered is the Newman–Girvan modularity matrix associated to the subgraph G(S)
induced by S. However, the structure of a generalized modularity matrix M = A+W − σvvT

might be only partially defined in terms of G, as W , v and σ may be arbitrary. Let us agree now
that, if this is the case, then we denote with MS the principal submatrix of M whose indices
are in S. Otherwise let MS denote the generalized modularity matrix defined in terms of G(S).
With this notation the SSGB scheme survives unchanged when MNG is replaced by a generic
M . The next corollary shows that Theorem 3.5 gives us informations on the connectivity of
the modules produced by the SSGB method, whenever the modularity measure is induced by
a generic M .

Corollary 3.7. Let M be any generalized modularity matrix. The spectral method applied to M
generates a pair of subgraphs, one of which is certainly connected. Similarly, the SSGB method
applied to M generates m subgraphs, half of which is connected.

Proof. LetM = A+W−σvvT. It is enough to observe that, if u is the eigenvector corresponding
to the larger eigenvalue mG oriented so that uTv ≥ 0 then, due to Theorem 3.5, the set
S = {i : ui ≥ 0} defines a bipartition of the node set such that G(S) is connected. However,
we have no apriori control on the connectivity of the other set of the bipartition.

A similar argument proves the thesis for the SSGB scheme. Due to the successive biparti-
tions, the algorithm produces m/2 pairs of subsets. To be precise, at each step of the scheme,
a subset S ⊆ V is given, then the matrix MS is computed and S is partitioned into a pair of
subsets being identified by the sign of the entries of the leading eigenvector of MS . Note that,
for any generalized modularity matrix M , the matrix MS has the form MS = A′ + W ′ + R,
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where A′ is a nonnegative symmetric matrix, W ′ is diagonal and R is a negative definite rank
one matrix. Observe now that, if uS is an eigenvector corresponding to the largest eigenvalue
of MS , and its sign is chosen appropriately, then the hypothesis of Theorem 3.5 are satisfied.
As a consequence the set S̃ = {i ∈ S : (uS)i ≥ 0} induces a connected subgraph in G(S), thus
a connected subgraph in G.

4. A criterion for the leading eigenpair

The classical Perron–Frobenius theory has been extended in various ways to matrices having
some negative entries. One of such extensions, found in [25], allows us to predict the sign pattern
in the leading eigenvector of a generalized modularity matrix.

Lemma 4.1. Let P ∈ Rn×n be a symmetric matrix. If 1
TP1 ≥

√

(n− 1)2 + 1‖P‖F then ρ(P )
is an eigenvalue of P which is simple and associated to a nonnegative eigenvector.

Proof. See [25, Thm. 4.1].

Remark that the preceding lemma makes no assumptions on signs and sizes of the entries
of the matrix P . In fact, various examples shown in [25] illustrate that the hypotheses of this
lemma can be fulfilled by matrices having some negative entries.

Theorem 4.2. Let M ∈ Rn×n be a generalized modularity matrix. Let S ⊂ V be a set fulfilling
the inequality

Q(S) +Q(S)− 2Q(S, S) ≥
√

(n− 1)2 + 1‖M‖F.
Then ρ(M) = mG is a simple eigenvalue of M which is associated to an eigenvector x with the
following property: S = {i : xi ≥ 0}.
Proof. Let J be the diagonal matrix such that Jii = 1 if i ∈ S and Jii = −1 otherwise.
Moreover, let P = JMJ . Observe that

1
TP1 = (1S − 1S)

TM(1S − 1S) = Q(S) +Q(S)− 2Q(S, S).

On the other hand, ‖P‖F = ‖M‖F. Finally, x is an eigenvector of M if and only if Jx is an
eigenvector of P . Thus the claim follows from Lemma 4.1.

However, since for a modularity matrix M the rightmost eigenvalue may not be equal to
the spectral radius, it is useful to derive a weakened version of the previous theorem which
considers the matrix pencil M + αI.

Corollary 4.3. Let M ∈ Rn×n be a generalized modularity matrix. Let S ⊆ V be a set fulfilling
the inequality

Q(S) +Q(S)− 2Q(S, S) ≥
√

(n− 1)2 + 1‖M + αI‖F − nα

for some α ∈ R. Then the rightmost eigenvalue of M is simple and associated to an eigenvector
x such that S = {i : xi ≥ 0}.
Proof. Repeat the argument in the previous proof with the matrix M replaced by M + αI.
Note that, in this case, 1

TP1 = Q(S) +Q(S)− 2Q(S, S) + nα.

Observe that the effect of introducing the shift M+αI is twofold: If α > 0 then the spectrum
of M is translated to the right, and the rightmost eigenvalue may become the spectral radius
of the shifted matrix. Moreover, the Frobenius norm of the shifted matrix may be smaller than
that of M , for example, when the graph has no loops; in that case, the diagonal of M is negative
and ‖M‖F can be decreased by means of a small positive shift. Indeed, note that ‖M + αI‖F
is minimum when α = −trace(M)/n.
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5. Sensibility under small perturbations

Let G = (V,E) be a given graph and let S ⊆ V be a set with Q(S) > 0 where Q is the
modularity function induced by MNG. Let (i, j) be an edge missing in G, and let G′ = (V,E′)
be the graph obtained by adding to G that edge: E′(i, j) > 0. It is not difficult to verify that,
due to the new edge,

• if both i ∈ S and j ∈ S then Q(S) increases,

• if i ∈ S and j /∈ S then Q(S) decreases.

Analogous behaviours can be observed by using other modularity-type functions, among those
recalled in Section 2. Indeed, in some sense, in the first case the new edge increases the
internal connection, and S becomes a stronger community than before; while in the latter case
S becomes less separated from its exterior, hence it is less recognizable as a community. It is
natural to ask whether that “monotonicity property” of the modularity function is somewhat
preserved by mG. Indeed, from our standpoint, it makes sense to observe the variation of the
rightmost eigenvalue mG of M after a small increment on the weight of one of the edges of
G. Accordingly, in place of the conditions like i ∈ S or i /∈ S, we consider the sign of the i-th
entry of a corresponding eigenvector of M . In fact, nodal domain based methods employ signs
of eigenvector entries to locate possible communities: a positive value indicates that the vertex
belongs to a cluster and a negative value that it is outside the cluster.

Of course if M = A+W − σvvT is a generalized modularity matrix for G, the modularity
matrix M ′ = A′+W ′−σ′v′v′T for the new graph G′ should be defined properly. Although it is
clear what A′ is, the matrices W ′ and σ′v′v′T may have not a clear definition. For definiteness,
we consider the following assumption: If the graph G is perturbed by adding a weight ε > 0
to the edge (i, j) then W ′ = W and there exists a symmetric matrix E such that σ′v′v′T =
σ(I + E)vvT(I +E) and ‖E‖2 ≤ ηε for some η. That is, we assume that the rank-one term in
M ′ is a small relative perturbation of that in M . That assumption is fulfilled in practice by all
modularity-type matrices introduced in Section 2. Note that it is possible to consider as E the
diagonal matrix whose diagonal entries are

Eii =

√
σ′v′i −

√
σvi√

σvi
i = 1, . . . , n.

A possible result along this direction is discussed throughout the remaining part of this section.

Definition 5.1. Let G0 be a given graph, let i, j ∈ V be a fixed pair of vertices, and let Gε

be the graph obtained by adding the edge in (i, j) to G0 with weight ε > 0. (Assume that, if
(i, j) is an edge in G0 then its weight in Gε is increased by ε.) Let M0 and Mε be generalized
modularity matrices of G0 and Gε, respectively. Define

µε
ij =

mGε
−mG0

ε
.

Let M0 and Mε as in the previous definition. If Mε −M0 = ε(eie
T

j + eje
T

i ) and λ1(M0) is
simple then λ1(Mε) varies according to the sign of xixj , where x is a leading eigenvector of M0,
at least for sufficiently small ε. In fact, from classical results in eigenvalue perturbation theory
[27], in the stated hypotheses λ1(Mε) is differentiable for small ε, whence µε

ij = λ′
1(M0) + o(ε).

Moreover, assuming that x is normalized, we have

λ′
1(M0) = ε−1xT(Mε −M0)x = xT(eie

T

j + eje
T

i )x = 2xixj ,
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showing indeed that µε
ij = 2xixj + o(ε). Now consider the general case where, according to our

previous assumption, we have

Mε −M0 = ε(eie
T

j + eje
T

i )− σ[(I + E)vvT(I + E)− vvT].

Then,

xT(Mε −M0)x = 2εxixj − σ[xT(I + E)vvT(I + E)x− xTvvTx]

= 2εxixj − σ[(xT(I + E)v)2 − (vTx)2]

= 2εxixj − σ(xT(2I + E)v)(vTEx).

Let cos θ = (xTv)/‖v‖2‖x‖2 be the cosine of the angle between x and v. Taking norms and
assuming ‖x‖2 = 1 as before, we obtain

|µε
ij − 2xixj | . 2η| cos θ|σ‖v‖22 = 2η| cos θ| ‖σvvT‖2,

neglecting lower order terms. Thus, if η and | cos θ| are sufficiently small then µε
ij has the same

sign of xixj . In particular, if the new edge is added between two nodes having the same sign
in x then the algebraic modularity increases, and conversely, if xixj < 0.

6. Positive eigenvalues and number of modules

On the basis of rather informal arguments, Newman claims in [17, Sect. B] that the number
of positive eigenvalues of MNG is related to the number of communities recognizable in the
graph G. The subsequent Theorem 6.2, which generalizes an analogous result concerning the
matrix MNG shown in [9, Thm. 6.2], proves that for any generalized modularity matrix and
the modularity function Q associated to it, the number of positive eigenvalues of M is actually
an upper bound for the cardinality of any family of pairwise disjoint modules in G having the
property that, if any two modules are merged then the overall modularity does not increase.

Lemma 6.1. Let S1, . . . , Sk be k pairwise disjoint, nontrivial subsets of V , with k ≥ 1. Let C
be the k × k symmetric matrix with Cij = 1

T

Si
M1Sj

where M is any modularity matrix. The
number of positive (nonnegative) eigenvalues of M is not smaller than the number of positive
(nonnegative, respectively) eigenvalues of C.

Proof. Consider the matrices Z = [1S1
· · · 1Sk

] and Σ = Diag(|S1|, . . . , |Sk|)−1/2. Note that

Ẑ = ZΣ has orthonormal columns. By Sylvester’s law of inertia, the number of positive
(nonnegative) eigenvalues of C coincides with the number of positive (nonnegative, respectively)
eigenvalues of ΣCΣ = ẐTMẐ. The claim follows by Cauchy interlacing inequalities (1).

Given a family of pairwise disjoint subsets P = {S1, . . . , Sk} one usually defines the modu-
larity of P as Q(P) =

∑

i Q(Si). The maximization of the latter quantity is a recurrent task
in community detection algorithms [17, 24, 26]. If each Si is a module, P maximizes Q(P) and
contains the least number of sets among all such families, then Q(Si, Sj) < 0 for i 6= j, other-
wise we can reduce |P| or increase Q(P) (or both) by merging subsets whose joint modularity is
nonnegative. In that case, the matrix C introduced in the preceding lemma has a sign pattern
which is well known in the field of nonnegative matrices [2]. One possible consequence is stated
in the forthcoming result, relating the number of positive eigenvalues of M to the number of
disjoint modules in G that optimize the overall modularity.
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Theorem 6.2. Let S1, . . . , Sk be k pairwise disjoint, nontrivial subsets of V , with k ≥ 1.
Suppose that, for all i = 1, . . . , k, we have Q(Si) > 0 and Q(Si, Sj) < 0 for i 6= j. If there exist
positive numbers α1, . . . , αk such that

αiQ(Si) >
∑

j 6=i

αj |Q(Si, Sj)| .

then M has at least k positive eigenvalues.

Proof. Let C be the k × k symmetric matrix with Cij = 1
T

Si
M1Sj

and let α = (α1, . . . , αk)
T.

In the stated hypotheses Cii > 0, Cij < 0 for i 6= j and Cα > 0. By a classical result
on nonnegative matrices [2, §6.2] C is a symmetric M-matrix, so in particular it is positive
definite. The claim follows immediately from Lemma 6.1.

It is worth noting that the condition on α1, . . . , αk in the previous theorem can be easily
fulfilled when S1, . . . , Sk is a partition of V and M = MNG or M = MAFG, see Section 2.
Indeed, in those cases we have M1 = 0 and, consequently, we can obtain the sought inequalities
by setting α1 = . . . = αk = 1 as shown in the forthcoming corollary.

Corollary 6.3. Let P = {S1, . . . , Sp} be a partition of V into pairwise disjoint subsets. Suppose
that Q(Si) > 0 and Q(Si, Sj) < 0 for i 6= j, where Q is the modularity function associated to a
generalized modularity matrix M such that M1 = 0. Then the number of positive eigenvalues
of M is at least p− 1.

Proof. Let Z = [1S1
· · · 1Sp

] and C = ZTMZ ≡ (1T

Si
M1Sj

). Since Z1 = 1, by hypothesis we

obtain C1 = ZTMZ1 = 0. Then, for i = 1, . . . , p− 1 we have

Q(Si) +
∑

j 6=i,p

Q(Si, Sj) = −Q(Si, Sp) > 0.

Using Theorem 6.2 with k = p− 1 we obtain the claim.

We close this section with the forthcoming theorem which states that, if G has k subgraphs
that are well separated and sufficiently rich in internal edges (including loops), then M has at
least k− 1 positive eigenvalues. This result extends Theorem 6.1 in [9] to arbitrary generalized
modularity matrices. For better clarity consider that, if S and T are two disjoint subsets of V ,
then the number 1

T

SA1T corresponds to the total weight of edges joining nodes in S with nodes
in T .

Theorem 6.4. Let S1, . . . , Sk be pairwise disjoint subsets of V , with k ≥ 1, such that

ein(Si) + 1
T

Si
W1Si

>
∑

j 6=i

1
T

Si
A1Sj

.

Then M has at least k − 1 positive eigenvalues.

Proof. Consider the matrices Z and Σ introduced in the proof of Lemma 6.1. Introduce the
k × k matrix B = ZT(A + W )Z. We have Bii = ein(Si) + 1

T

Si
W1Si

and Bij = 1
T

Si
A1Sj

for
i 6= j. By hypothesis, B is nonnegative and strictly diagonally dominant, hence it is positive
definite. Consider the matrix C defined in Lemma 6.1:

C = ZTMZ = ZT(A+W − σvvT)Z = B − σ(Zv)(Zv)T.

We see that C is a negative semidefinite, rank-one perturbation of B, hence it has at least k−1
positive eigenvalues. The claim follows from Lemma 6.1.
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7. Conclusions

Community detection is a major problem arising in modern complex network analysis, and
modularity-type matrices and functions play a fundamental role in network science. In fact,
several generalizations of the modularity matrix originally introduced by Newman and Girvan
[17, 18, 19] appear in the complex networks literature, often in a rather hidden form. In
this paper we put in evidence that a common structure and various spectral properties are
shared by all these matrices. As the matrix theoretic approach to modularity based methods
is very recent, several directions of investigation are left open. Relevant steps would be, in
our opinion, to provide lower bounds for the modularity of graphs in terms of the spectrum
of the associated modularity matrix, and robustness results of leading modules with respect to
different modularity measures.
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