1,582 research outputs found

    Exercise and the microbiota

    Get PDF
    The authors are supported in part by research grants from Science Foundation Ireland including a centre grant (Alimentary Pharmabiotic Centre; Grant Numbers SFI/12/RC/2273 and 12/RC/2273). Dr. Orla O’Sullivan is funded by a Starting Investigator Research Grant from Science Foundation Ireland (Grant number 13/SIRG/2160). Dr. Paul Cotter is funded by a Principal Investigator Award from Science Foundation Ireland P.D.C are supported by a SFI PI award (Grant number 11/PI/1137).peer-reviewedSedentary lifestyle is linked with poor health, most commonly obesity and associated disorders, the corollary being that exercise offers a preventive strategy. However, the scope of exercise biology extends well beyond energy expenditure and has emerged as a great ‘polypill’, which is safe, reliable and cost-effective not only in disease prevention but also treatment. Biological mechanisms by which exercise influences homeostasis are becoming clearer and involve multi-organ systemic adaptations. Most of the elements of a modern lifestyle influence the indigenous microbiota but few studies have explored the effect of increased physical activity. While dietary responses to exercise obscure the influence of exercise alone on gut microbiota, professional athletes operating at the extremes of performance provide informative data. We assessed the relationship between extreme levels of exercise, associated dietary habits and gut microbiota composition, and discuss potential mechanisms by which exercise may exert a direct or indirect influence on gut microbiota.The authors are supported in part by research grants from Science Foundation Ireland including a centre grant (Alimentary Pharmabiotic Centre; Grant Numbers SFI/12/RC/2273 and 12/RC/2273). Dr. Orla O’Sullivan is funded by a Starting Investigator Research Grant from Science Foundation Ireland (Grant number 13/SIRG/2160). Dr. Paul Cotter is funded by a Principal Investigator Award from Science Foundation Ireland P.D.C are supported by a SFI PI award (Grant number 11/PI/1137)

    Fine-scale movement of the European hedgehog: An application of spool-and-thread tracking

    Get PDF
    The European hedgehog is a significant predator species of rare and endangered ground-nesting birds in the riverbeds of the Waitaki Basin, South Island, New Zealand. Studies focusing on the movements and habits of this species have generally been limited to broad-scale radio-tracking studies or incidental trap-catch data. Within our study, we aimed to investigate the finer scale movement patterns of the hedgehog in relation to vegetation structure by using spool-and-thread tracking. We captured 30 hedgehogs (15 female, 15 male) within the study area, and spool-and-thread-tracked the movements of each over a single night. Only two of the 30 animals moved onto the gravel areas of the riverbeds where birds nest - hedgehogs may therefore not target birds' nests as a primary prey source, but rather as a secondary prey item. The movement paths were all non-random, and males demonstrated particular linearity in their tracks. This straighter and more directed movement may be due to more intensive male search at this time of the year. We also assessed habitat use using a very high resolution habitat map (derived from Ikonos 4-m-resolution satellite image). Dense grassland was the most selected habitat type, perhaps because insect prey are at a higher density in this vegetation type. Hedgehogs (particularly males) also used boundaries of all habitat types significantly more than the centre of habitat patches. We found the spool-and-thread tracking technique does have limitations: (1) it could be inappropriate for animals exhibiting a significant escape response; (2) the data do not include a temporal dimension. However, these problems were not considered relevant for this study. Fine-scale studies such as this can provide increased power when investigating the ecology of species at a scale relevant to trap placement

    Targeting the Microbiota to Address Diet-Induced Obesity: A Time Dependent Challenge

    Get PDF
    peer-reviewedLinks between the gut microbiota and host metabolism have provided new perspectives on obesity. We previously showed that the link between the microbiota and fat deposition is age- and time-dependent subject to microbial adaptation to diet over time. We also demonstrated reduced weight gain in diet-induced obese (DIO) mice through manipulation of the gut microbiota with vancomycin or with the bacteriocin-producing probiotic Lactobacillus salivarius UCC118 (Bac+), with metabolic improvement achieved in DIO mice in receipt of vancomycin. However, two phases of weight gain were observed with effects most marked early in the intervention phase. Here, we compare the gut microbial populations at the early relative to the late stages of intervention using a high throughput sequencing-based analysis to understand the temporal relationship between the gut microbiota and obesity. This reveals several differences in microbiota composition over the intervening period. Vancomycin dramatically altered the gut microbiota composition, relative to controls, at the early stages of intervention after which time some recovery was evident. It was also revealed that Bac+ treatment initially resulted in the presence of significantly higher proportions of Peptococcaceae and significantly lower proportions of Rikenellaceae and Porphyromonadaceae relative to the gut microbiota of L. salivarius UCC118 bacteriocin negative (Bac-) administered controls. These differences were no longer evident at the later time. The results highlight the resilience of the gut microbiota and suggest that interventions may need to be monitored and continually adjusted to ensure sustained modification of the gut microbiota.The authors are supported in part by Teagasc, Science Foundation Ireland (in the form of a research centre grant to the Alimentary Pharmabiotic Centre and PI awards to PWOT and PC) and by Alimentary Health Ltd

    Colloquium: Gravitational Form Factors of the Proton

    Full text link
    The physics of the gravitational form factors of the proton, and their understanding within quantum chromodynamics, has advanced significantly in the past two decades through both theory and experiment. This Colloquium provides an overview of this progress, highlights the physical insights unveiled by studies of gravitational form factors, and reviews their interpretation in terms of the mechanical properties of the proton.Comment: 22 pages, 15 figure

    Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling

    Get PDF
    Vascular calcification (VC) is the process of deposition of calcium phosphate crystals in the blood vessel wall, with a central role for vascular smooth muscle cells (VSMCs). VC is highly prevalent in chronic kidney disease (CKD) patients and thought, in part, to be induced by phosphate imbalance. The molecular mechanisms that regulate VC are not fully known. Here we propose a novel role for the mineralisation regulator Ucma/GRP (Upper zone of growth plate and Cartilage Matrix Associated protein/Gla Rich Protein) in phosphate-induced VSMC calcification. We show that Ucma/GRP is present in calcified atherosclerotic plaques and highly expressed in calcifying VSMCs in vitro. VSMCs from Ucma/GRP(-/-) mice showed increased mineralisation and expression of osteo/chondrogenic markers (BMP-2, Runx2, beta-catenin, p-SMAD1/5/8, ALP, OCN), and decreased expression of mineralisation inhibitor MGP, suggesting that Ucma/GRP is an inhibitor of mineralisation. Using BMP signalling inhibitor noggin and SMAD1/5/8 signalling inhibitor dorsomorphin we showed that Ucma/GRP is involved in inhibiting the BMP-2-SMAD1/5/8 osteo/chondrogenic signalling pathway in VSMCs treated with elevated phosphate concentrations. Additionally, we showed for the first time evidence of a direct interaction between Ucma/GRP and BMP-2. These results demonstrate an important role of Ucma/GRP in regulating osteo/chondrogenic differentiation and phosphate-induced mineralisation of VSMCs.NWO ZonMw [MKMD 40-42600-98-13007]; FCT [SFRH/BPD/70277/2010]info:eu-repo/semantics/publishedVersio

    Redox-neutral organocatalytic Mitsunobu reactions

    Get PDF
    Nucleophilic substitution reactions of alcohols are amongst the most fundamental and strategically important transformations in organic chemistry. For over half a century these reactions have been achieved using stoichiometric, and often hazardous, reagents to activate the otherwise unreactive alcohols. Here we demonstrate that a specially designed phosphine oxide promotes nucleophilic substitution reactions of primary and secondary alcohols within a redoxneutral catalysis manifold that produces water as the sole by-product. The scope of the catalytic coupling process encompasses a range of acidic pronucleophiles that allow stereospecific construction of carbon-oxygen and carbon-nitrogen bonds
    • …
    corecore