462 research outputs found

    Remote Sensing of Ploidy Level in Quaking Aspen (Populus Tremuloides Michx.)

    Get PDF
    Ploidy level in plants may influence ecological functioning, demography and response to climate change. However, measuring ploidy level typically requires intensive cell or molecular methods. We map ploidy level variation in quaking aspen, a dominant North American tree species that can be diploid or triploid and that grows in spatially extensive clones. We identify the predictors and spatial scale of ploidy level variation using a combination of genetic and ground‐based and airborne remote sensing methods. We show that ground‐based leaf spectra and airborne canopy spectra can both classify aspen by ploidy level with a precision‐recall harmonic mean of 0.75–0.95 and Cohen\u27s kappa of c. 0.6–0.9. Ground‐based bark spectra cannot classify ploidy level better than chance. We also found that diploids are more common on higher elevation and steeper sites in a network of forest plots in Colorado, and that ploidy level distribution varies at subkilometer spatial scales. Synthesis. Our proof‐of‐concept study shows that remote sensing of ploidy level could become feasible in this tree species. Mapping ploidy level across landscapes could provide insights into the genetic basis of species\u27 responses to climate change

    Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    Get PDF
    International audienceA free-volume model of the dynamic viscosity and the self-diffusion coefficients was discussed. The temperature-pressure variations of the dynamic viscosity and the self-diffusion coefficients of small molecules were predicted. The compounds, carbon tetrachloride, cyclohexane, benzene, chlorotrifluoromethane, tetramethylsilane and methylcyclohexane were used for the investigation. The relation between microstructure, free volume and different complex thermophysical properties were emphasized by the model

    Comparison between nasopharyngeal swab and nasal wash, using culture and PCR, in the detection of potential respiratory pathogens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carriage of potential pathogens is important as it is both the major source of transmission and the prerequisite of invasive disease. New methods for detecting carriage could improve comfort, accuracy and laboratory utility. The aims of this study were to compare the sensitivities of a nasopharyngeal swab (NPS) and a nasal wash (NW) in detecting potential respiratory pathogens in healthy adults using microbiological culture and PCR.</p> <p>Results</p> <p>Healthy volunteers attended for nasal washing and brushing of the posterior nasopharynx. Conventional and real-time PCR were used to detect pneumococcus and meningococcus. Statistical differences between the two nasal sampling methods were determined using a nonparametric Mann-Whitney U test; differences between culture and PCR methods were determined using the McNemar test.</p> <p>Nasal washing was more comfortable for volunteers than swabbing (n = 24). In detection by culture, the NW was significantly more likely to detect pathogens than the NPS (<it>p </it>< 0.00001). Overall, there was a low carriage rate of pathogens in this sample; no significant difference was seen in the detection of bacteria between culture and PCR methods.</p> <p>Conclusions</p> <p>Nasal washing and PCR may provide effective alternatives to nasopharyngeal swabbing and classical microbiology, respectively.</p

    Reconsidering the Tribal-State Compact Process

    Get PDF
    This essay evaluates the tribal‐state compact process, as one of several alternative, nonadversarial processes, warranting attention. It argues that, because of its binding character and relatively low cost (in contrast to litigation), and because it is based in the idea of tribes and states exhibiting mutual respect, the compact process is an advanced version of negotiation and bargaining that tribes and states should consider where appropriate

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    Interleukin-17A Mediates Acquired Immunity to Pneumococcal Colonization

    Get PDF
    Although anticapsular antibodies confer serotype-specific immunity to pneumococci, children increase their ability to clear colonization before these antibodies appear, suggesting involvement of other mechanisms. We previously reported that intranasal immunization of mice with pneumococci confers CD4+ T cell–dependent, antibody- and serotype-independent protection against colonization. Here we show that this immunity, rather than preventing initiation of carriage, accelerates clearance over several days, accompanied by neutrophilic infiltration of the nasopharyngeal mucosa. Adoptive transfer of immune CD4+ T cells was sufficient to confer immunity to naïve RAG1−/− mice. A critical role of interleukin (IL)-17A was demonstrated: mice lacking interferon-γ or IL-4 were protected, but not mice lacking IL-17A receptor or mice with neutrophil depletion. In vitro expression of IL-17A in response to pneumococci was assayed: lymphoid tissue from vaccinated mice expressed significantly more IL-17A than controls, and IL-17A expression from peripheral blood samples from immunized mice predicted protection in vivo. IL-17A was elicited by pneumococcal stimulation of tonsillar cells of children or adult blood but not cord blood. IL-17A increased pneumococcal killing by human neutrophils both in the absence and in the presence of antibodies and complement. We conclude that IL-17A mediates pneumococcal immunity in mice and probably in humans; its elicitation in vitro could help in the development of candidate pneumococcal vaccines
    • 

    corecore