2,134 research outputs found

    Human sperm accumulation near surfaces: a simulation study

    Get PDF
    A hybrid boundary integral/slender body algorithm for modelling flagellar cell motility is presented. The algorithm uses the boundary element method to represent the ‘wedge-shaped’ head of the human sperm cell and a slender body theory representation of the flagellum. The head morphology is specified carefully due to its significant effect on the force and torque balance and hence movement of the free-swimming cell. The technique is used to investigate the mechanisms for the accumulation of human spermatozoa near surfaces. Sperm swimming in an infinite fluid, and near a plane boundary, with prescribed planar and three-dimensional flagellar waveforms are simulated. Both planar and ‘elliptical helicoid’ beating cells are predicted to accumulate at distances of approximately 8.5–22 μm from surfaces, for flagellar beating with angular wavenumber of 3π to 4π. Planar beating cells with wavenumber of approximately 2.4π or greater are predicted to accumulate at a finite distance, while cells with wavenumber of approximately 2π or less are predicted to escape from the surface, likely due to the breakdown of the stable swimming configuration. In the stable swimming trajectory the cell has a small angle of inclination away from the surface, no greater than approximately 0.5°. The trapping effect need not depend on specialized non-planar components of the flagellar beat but rather is a consequence of force and torque balance and the physical effect of the image systems in a no-slip plane boundary. The effect is relatively weak, so that a cell initially one body length from the surface and inclined at an angle of 4°–6° towards the surface will not be trapped but will rather be deflected from the surface. Cells performing rolling motility, where the flagellum sweeps out a ‘conical envelope’, are predicted to align with the surface provided that they approach with sufficiently steep angle. However simulation of cells swimming against a surface in such a configuration is not possible in the present framework. Simulated human sperm cells performing a planar beat with inclination between the beat plane and the plane-of-flattening of the head were not predicted to glide along surfaces, as has been observed in mouse sperm. Instead, cells initially with the head approximately 1.5–3 μm from the surface were predicted to turn away and escape. The simulation model was also used to examine rolling motility due to elliptical helicoid flagellar beating. The head was found to rotate by approximately 240° over one beat cycle and due to the time-varying torques associated with the flagellar beat was found to exhibit ‘looping’ as has been observed in cells swimming against coverslips

    <i>Actinomyces europaeus</i> Isolated from a Breast Abscess in a Penicillin-Allergic Patient.

    Get PDF
    This is a case of Actinomyces europaeus in the breast abscess of a penicillin-allergic woman. The mainstay of treatment for actinomycosis is penicillin, and there is a lack of literature describing nonpenicillin treatment options. A 69-year-old woman presented acutely with a breast abscess which was managed with incision and drainage and antibiotic therapy to good response. 21 days after presentation, Actinomyces were grown from the culture of pus, so the patient was recalled and more rigorous treatment and follow-up were initiated. The penicillin allergy led to difficulty in the identification of an appropriate antimicrobial agent that was also logistically feasible to be given on an outpatient IV basis. IV tigecycline followed by oral clarithromycin was found to be effective treatment

    SELECTED METABOLIC AND HEMODYNAMIC RESPONSES TO REPEATED STEADY-STATE BOUTS OF INDOOR CYCLING, UTILISING MARGINAL INCREASES IN MECHANICAL POWER OUTPUT: CONSIDERATIONS FOR THE EVALUATION OF INDIVIDUAL COMPETITIVE ROAD CYCLISTS USING A PORTABLE ON-BICYCLE C

    Get PDF
    Introduction It has been demonstrated by Sanderson, Cavanaugh et a1. (1985), and the authors, (1987 , that impul e and average net power distributions (W) generated about the pedal spindle and crank arms, vary with individual cyclists, either creating a mechanically desirable circular cycling pattern where the impulse is 'smoothed', or a 'butterfly' distribution indicating unequal force distribution(s throughout each pedaling cycle. Based on research performed indoors by Cavanaugh (1985), and Anderson (1986), and this group outdoors at the United States Cycling Federation Camp in Colorado in 1987 and 1988, it appears that techniques employed to reduce the counter-propulsive tangential crank arm forces could possible improve average net power magnitudes produced by individual elite cyclists outdoors during competition, and thus improve their overall time(s) recorded for selected events
    • …
    corecore