1,063 research outputs found
Hypercharge and baryon minus lepton number in E6
We study assignments of the hypercharge and baryon minus lepton number for
particles in the grand unification model. It is shown that there are
three assignments of hypercharge and three assignments of baryon minus lepton
number which are consistent with the Standard Model. Their explicit expressions
and detailed properties are given. In particular, we show that the
symmetry in cannot be orthogonal to the symmetry. Based on
these investigations, we propose an alternative SU(5) grand unification model.Comment: 16 pages, JHEP3.cls, To appear in JHE
Scalar Bilepton Dark Matter
In this work we show that 3-3-1 model with right-handed neutrinos has a
natural weakly interacting massive particle (WIMP) dark mater candidate. It is
a complex scalar with mass of order of some hundreds of GeV which carries two
units of lepton number, a scalar bilepton. This makes it a very peculiar WIMP,
very distinct from Supersymmetric or Extra-dimension candidates. Besides,
although we have to make some reasonable assumptions concerning the several
parameters in the model, no fine tunning is required in order to get the
correct dark matter abundance. We also analyze the prospects for WIMP direct
detection by considering recent and projected sensitivities for WIMP-nucleon
elastic cross section from CDMS and XENON Collaborations.Comment: 21 pages, 8 figures, uses iopart.cls, same text as published version
with a small different arrangement of figure
Exploration of Possible Quantum Gravity Effects with Neutrinos II: Lorentz Violation in Neutrino Propagation
It has been suggested that the interactions of energetic particles with the
foamy structure of space-time thought to be generated by quantum-gravitational
(QG) effects might violate Lorentz invariance, so that they do not propagate at
a universal speed of light. We consider the limits that may be set on a linear
or quadratic violation of Lorentz invariance in the propagation of energetic
neutrinos, v/c=[1 +- (E/M_\nuQG1)] or [1 +- (E/M_\nu QG2}^2], using data from
supernova explosions and the OPERA long-baseline neutrino experiment.Comment: 8 pages, 6 figures, proceedings for invited talk by A.Sakharov at
DISCRETE'08, Valencia, Spain; December 200
Cosmodynamics: Energy conditions, Hubble bounds, density bounds, time and distance bounds
We refine and extend a programme initiated by one of the current authors
[Science 276 (1997) 88; Phys. Rev. D56 (1997) 7578] advocating the use of the
classical energy conditions of general relativity in a cosmological setting to
place very general bounds on various cosmological parameters. We show how the
energy conditions can be used to bound the Hubble parameter H(z), Omega
parameter Omega(z), density rho(z), distance d(z), and lookback time T(z) as
(relatively) simple functions of the redshift z, present-epoch Hubble parameter
H_0, and present-epoch Omega parameter Omega_0. We compare these results with
related observations in the literature, and confront the bounds with the recent
supernova data.Comment: 21 pages, 2 figure
Neutralino relic density in supersymmetric GUTs with no-scale boundary conditions above the unification scale
We investigate SU(5) and SO(10) GUTs with vanishing scalar masses and
trilinear scalar couplings at a scale higher than the unification scale. The
parameter space of the models, further constrained by b-\tau Yukawa coupling
unification, consists of a common gaugino mass and of \tan\beta. We analyze the
low energy phenomenology, finding that A-pole annihilations of neutralinos
and/or coannihilations with the lightest stau drive the relic density within
the cosmologically preferred range in a significant region of the allowed
parameter space. Implications for neutralino direct detection and for CERN LHC
experiments are also discussed.Comment: 14 pages, 5 figures, JHEP style. Version accepted for publication in
JHE
Supernova prompt neutronization neutrinos and neutrino magnetic moments
It is shown that the combined action of spin-flavor conversions of supernova
neutrinos due to the interactions of their Majorana-type transition magnetic
moments with the supernova magnetic fields and flavor conversions due to the
mass mixing can lead to the transformation of \nu_e born in the neutronization
process into their antiparticles \bar{\nu}_e. Such an effect would have a clear
experimental signature and its observation would be a smoking gun evidence for
the neutrino transition magnetic moments. It would also signify the leptonic
mixing parameter |U_{e3}| in excess of 10^{-2}.Comment: LaTex, 25 pages, 3 figures. v4: Discussion section expanded,
references added. Matches the published versio
Neutrino masses and the number of neutrino species from WMAP and 2dFGRS
We have performed a thorough analysis of the constraints which can be put on
neutrino parameters from cosmological observations, most notably those from the
WMAP satellite and the 2dF galaxy survey. For this data we find an upper limit
on the sum of active neutrino mass eigenstates of \sum m_nu < 1.0 eV (95%
conf.), but this limit is dependent on priors. We find that the WMAP and 2dF
data alone cannot rule out the evidence from neutrinoless double beta decay
reported by the Heidelberg-Moscow experiment. In terms of the relativistic
energy density in neutrinos or other weakly interacting species we find, in
units of the equivalent number of neutrino species, N_nu, that N_nu =
4.0+3.0-2.1 (95% conf.). When BBN constraints are added, the bound on N_\nu is
2.6+0.4-0.3 (95% conf.), suggesting that N_nu could possibly be lower than the
standard model value of 3. This can for instance be the case in models with
very low reheating temperature and incomplete neutrino thermalization.
Conversely, if N_nu is fixed to 3 then the data from WMAP and 2dFGRS predicts
that 0.2458 < Y_P < 0.2471, which is significantly higher than the
observationally measured value. The limit on relativistic energy density
changes when a small chemical potential is present during BBN. In this
case the upper bound on N_nu from WMAP, 2dFGRS and BBN is N_nu < 6.5. Finally,
we find that a non-zero \sum m_nu can be compensated by an increase in N_nu.
One result of this is that the LSND result is not yet ruled out by cosmological
observations.Comment: 10 pages, 6 figure
Discrete symmetries and models of flavor mixing
Evidences of a discrete symmetry behind the pattern of lepton mixing are
analyzed. The program of "symmetry building" is outlined. Generic features and
problems of realization of this program in consistent gauge models are
formulated. The key issues include the flavor symmetry breaking, connection of
mixing and masses, {\it ad hoc} prescription of flavor charges, "missing"
representations, existence of new particles, possible accidental character of
the TBM mixing. Various ways are considered to extend the leptonic symmetries
to the quark sector and to reconcile them with Grand Unification. In this
connection the quark-lepton complementarity could be a viable alternative to
TBM. Observational consequences of the symmetries and future experimental tests
of their existence are discussed.Comment: 14 pages, 5 figures. Talk given at the Symposium "DISCRETE 2010", 6 -
11 December 2010, La Sapienza, Rome, Ital
Neutrino Physics at the Turn of the Millenium
Recent solar & atmospheric nu-data strongly indicate need for physics beyond
the Standard Model. I review the ways of reconciling them in terms of 3-nu
oscillations. Though not implied by data, bi-maximal nu-mixing models emerge as
a possibility. SUSY with broken R-parity provides an attractive way to
incorporate it, opening the possibility of testing nu-anomalies at high- energy
colliders such as the LHC or at the upcoming long-baseline or nu- factory
experiments. Reconciling, in addition, the LSND hint requires a fourth, light
sterile neutrino, nus. The simplest are the most symmetric scenarios, in which
2 of the 4 neutrinos are maximally-mixed and lie at the LSND scale, while the
others are at the solar scale. The lightness of nus, the nearly maximal
atmospheric mixing, and the solar/atmospheric splittings all follow naturally
from the assumed lepton-number symmetry and its breaking. These basic schemes
can be distinguished at neutral-current-sensitive solar & atmospheric neutrino
experiments such as SNO. However underground experiments have not yet proven
neutrino masses, as there are many alternatives. For example flavour changing
interactions can play an important role in the explanation of solar and
contained atmospheric data and could be tested e.g through \mu \to e + \gamma,
\mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay.
Conversely, a short-lived numu might play a role in the explanation of the
atmospheric data. Finally, in the presence of a nus, a long-lived heavy nutau
could delay the time at which the matter and radiation contributions to the
energy density of the Universe become equal, reducing density fluctuations on
smaller scales, thus saving the standard CDM scenario, while the light nue,
numu and nus would explain the solar & atmospheric data.Comment: Invited talk at 2nd International Conference on Non-Accelerator New
Physics (NANP-99), Dubna, June 28 - July 3, 199
Probing the seesaw mechanism with neutrino data and leptogenesis
In the framework of the seesaw mechanism with three heavy right-handed
Majorana neutrinos and no Higgs triplets we carry out a systematic study of the
structure of the right-handed neutrino sector. Using the current low-energy
neutrino data as an input and assuming hierarchical Dirac-type neutrino masses
, we calculate the masses and the mixing of the heavy neutrinos.
We confront the inferred properties of these neutrinos with the constraints
coming from the requirement of a successful baryogenesis via leptogenesis. In
the generic case the masses of the right-handed neutrinos are highly
hierarchical: ; the lightest mass is GeV and the generated baryon-to-photon ratio is
much smaller than the observed value. We find the special cases which
correspond to the level crossing points, with maximal mixing between two
quasi-degenerate right-handed neutrinos. Two level crossing conditions are
obtained: (1-2 crossing) and (2-3
crossing), where and are respectively the 11-entry and the
12-subdeterminant of the light neutrino mass matrix in the basis where the
neutrino Yukawa couplings are diagonal. We show that sufficient lepton
asymmetry can be produced only in the 1-2 crossing where GeV, GeV and .Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and
references) added on non-thermal leptogenesi
- …